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Results

Theorem 1. Let X and Y be one-dimensional Peano

continua. If the fundamental groups of X and Y are

isomorphic, then X and Y are homotopy equivalent.

Theorem 2. Let X be a one-dimensional Peano continuum,

Y a one-dimensional metric space and x ∈ X and y ∈ Y .

For each homomorphism h : π1(X, x) → π1(Y, y) there

exists a continuous map f : X → Y and a path q from f(x)

to y such that h = ϕq ◦ f∗, where ϕq is the base point

change isomorphism.
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Results continued and our strategy

Corollay 3. Let X and Y be one-dimensional Peano

continua and f : X → Y a continuous map. If f induces an

isomorphism between the fundamental groups of X and Y ,

f is a homotopy equivalence between X and Y .

Our strategy of proofs:

Reduce a one-dimensional Peano continuum to a

one-dimensional Peano continuum which is a disjoint union

of wild points and open arcs. Wild points are mapped

continuously by a given homomorphism according to a

previous result. Hence devise a mapping on open arcs.



Reduction of one-dimensional Peano continua

Xw is the set of all wild points x, i.e. X is not semi-locally

simply connected at x. OX is the complement of Xw.

Theorem 4. (M. Meilstrup [MM]) Every one-dimensional

Peano continuum is homotopy equivalent to a

one-dimensional Peano continuum X such that X is a finite

connected graph or OX is at most countable union of open

arcs the end points of which belong to Xw.



　　

　



Main Lemma 1 (Lemma 5.1 of [E])

X: first countable, Y : one-dimensional metric space.

h : π1(X, x) → π1(Y, y). Then, for x0 ∈ Xw
h there exists a

unique point y0 ∈ Y such that:

For a path p in X from x0 to x, there exists a

unique path q in Y from y0 to y up to homotopy

which satisfies the following:

for each continuous map

f : (H, o) → (X, x0) there exists a

continuous map g : (H, o) → (Y, y0) such

that h · ϕp · f∗ = ϕq · g∗.



A notion in Main Lemma 1

A point x0 is wild with respect to h, if each neighborhood of

x0 contains a loop f with base point x0 such that

h(ϕg([f ])) is non-trivial for some path g from x0 to x (This

does not depend on the choice of g).

Define Xw
h to be the set of all points which are wild with

respect to h.

If h is the injective homomorphism, Xw
h = Xw.
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Map h̃ by Main Lemma 1

Define h̃ : Xw
h → Y w by

h̃(x0) = y0.

If X is path-connected and locally path-connected, h̃ is

continuous by Lemma 5.3 of [E].

We’ll extend h̃ on open arcs.



How to map open Arcs

PXw
h ,x(X) is the set of all paths from points in Xw

h to x.

PXw
h
(X) is the set of all paths between points in Xw

h .

RP (X) is the set of all reduced paths.

Define ψ : PXw
h ,x(X) → RP (Y ) by Main Lemma 1. For a

path p from x0 ∈ Xw
h to x, we have a reduced path q from

h̃(x0) to y such that the properties there hold. Let

ψ(p) = q.

Next define ξ : PXw
h
(X) → RP (Y ) as follows. For a path

p0 from x1 ∈ Xw
h to x0 ∈ Xw

h in X, p0p is a path from x1

to x. Let ξ(p0) be a reduced path homotopic to

ψ(p0p)ψ(p)−.



How to map open Arcs (Figure 1)

　　

　



How to map open Arcs (Figure 2)

　　

　



Extension of h̃

X = Xw
h ∪

∪
i∈I Ai, where Ais are open arcs and

A0
i , A1

i ∈ Xw
h .

For each Ai, choose a continuous map ai : [0, 1] → Ai with

ai(0) = A0
i and ai(1) = A1

i so that the restriction of ai to

(0, 1) is injective. (That is, ai is a homeomorphism, if

A0
i 6= A1

i .)

For x ∈ Ai, define

h̃(x) = ξ(ai)(a
−1
i (x))



Main Lemma 2 (Lemma 6.6 of [E])

Let X be a one-dimensional metric space, P h
x (X) be the

space of paths to x in the homotopy category fixing the end

points and F : [0, 1] → P h
x (X) be a path such that F (0) is

degenerate. If f ∈ RPx(X) represents F (1), then σ ◦ F

and f are homotopic.

Here, σ(g) is the starting point of a path g ∈ Px(X), i.e. g

is a path from σ(g) to x.



What need to be shown

(1) The definition of ξ(p0) does not depend on p. More

precisely ξ(p0) is defined by p0 and h uniquely up to the

equivalence.

(2) Let x0, x1, x2 ∈ Xw
h and p0 be a path from x1 to x0

and p1 be a path from x2 to x1. Then

[ξ(p1p0)] = [ξ(p1)ξ(p0)].

(3) For a path p0 from x1 ∈ Xw
h◦g to x0 ∈ Xw

h◦g,

[ξ1(ξ0(p0))] = [ξ2(p0)].



What need to be shown (continued)

(4) Let X, Y be one-dimensional metric spaces and X be

locally path-connected and path-connected, and

h : π1(X, x) → π1(Y, y) be a homomorphism. Let

xn, yn ∈ Xw
h and pn be a path from yn to xn for each

n < ω such that Im(pn) converge to x∞ ∈ Xw
h . Then

Im(ξ(pn)) converge to h̃(x∞).



What need to be shown (continued again)

(5) Let h : π1(X, x) → π1(Y, y) be a homomorphism and r

be a reduced path from x1 ∈ Xw
h to x0 ∈ Xw

h . Then

ξ(r) is homotopic to h̃ ◦ r.

(6) Let h0 : π1(X, x) → π1(Y, y) be an isomorphism and

h1 be its inverse. Let p be a path between points in

Xw. Then p is homotopic to h̃1 ◦ h̃0 ◦ p.



Proof of Theorem 1

Assume that X = Xw ∪
∪

i∈I Ai and Y = Y w ∪
∪

j∈J Bj,

where I and J are at most countable, Ai and Bj are open

arcs. Let h0 : π1(X, x) → π1(Y, y) be an isomorphism and

h1 : π1(Y, y) → π1(X, x) be its inverse.

By (6) ai and h̃1 ◦ h̃0 ◦ ai is homotopic for each i. By (4)

and a well-known fact we can join these homotopies as one

homotopy.



Proof of Theorem 2

What we need to overcome is the situation “there are wild

parts in X where are not wild respect to h.”

Need to construct graphs in X \ Xw
h by collapsing the

wildness in Xw. Modifying proof of Theorem 4 we construct

a Peano continuum which is a union of Xw
h and open arcs.

Construct a retraction using that a finite graph is an

absolute extensor. For this purpose brick partitions work

well, since components are disjoint.



Conclusion - Reflexivity

Specker’s theorem implies that the countable direct product

Zω is Z-reflexive.

Through the Higman theorem, i.e. the non-commutative

Specker theorem, this reflexivity supports these

correspondences between the categories of the homotopy

types and of the fundamental groups in the world of one

dimensional Peano continua.
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