Covering maps over topological groups (joint work with V. Matijević)

Katsuya Eda

School of Science and Engineering, Waseda University, Tokyo 169-8555, JAPAN

2015 June 22

Covering maps

A continuous map $f: X \to Y$ is a covering map, if for each $y \in Y$ there exists a neighborhood U of y such that $f^{-1}(U)$ is a discrete family of copies of U. Each copy of U is called a sheet. Infinite-sheeted covering:

 $f:\mathbb{R} o\mathbb{R}/\mathbb{Z}$

Finite-sheeted covering:

 $f_p:\mathbb{R}/p\mathbb{Z} o\mathbb{R}/\mathbb{Z}$

Covering maps over topological groups

Let $f : X \to Y$ be a covering map from a connected spaces over a topological group Y (Y is automatically connected).

(Old question) Does there exist a group-strucure on X such that X is a topological group and f is a homomorphism?

YES means that there exists such a group-structure on X.

Well-known fact: (1) If Y is locally path-connected, then YES (in Pontrjagin's book [P] of 1950). Less-known fact: If Y is compact and f is finite-sheeted, then YES (after 2000 by S. A. Grigorov - R. N. Gumerov [GG] and by K. E. - V. Matijević [EM1] independently).

Covering maps over topological groups

Let $f: X \to Y$ be a covering map from a connected spaces over a topological group Y (Y is automatically connected).

(Old question) Does there exist a group-strucure on X such that X is a topological group and f is a homomorphism?

YES means that there exists such a group-structure on X.

Well-known fact: (1) If Y is locally path-connected, then YES (in Pontrjagin's book [P] of 1950).

Less-known fact: If Y is compact and f is finite-sheeted, then YES (after 2000 by S. A. Grigorov - R. N. Gumerov [GG] and by K. E. - V. Matijević [EM1] independently).

Covering maps over topological groups

Let $f : X \to Y$ be a covering map from a connected spaces over a topological group Y (Y is automatically connected).

(Old question) Does there exist a group-strucure on X such that X is a topological group and f is a homomorphism?

YES means that there exists such a group-structure on X.

Well-known fact: (1) If Y is locally path-connected, then YES (in Pontrjagin's book [P] of 1950). Less-known fact: If Y is compact and f is finite-sheeted, then YES (after 2000 by S. A. Grigorov - R. N. Gumerov [GG] and by K. E. - V. Matijević [EM1] independently).

Overlay concerns!

Let Y be compact, then YES if and only if f is an overlay map (in 2013 by K. E. - V. Matijević [EM2]).

In addition, there exists a covering map over each solenoid such that the map cannot be an overlay map.

According to the previously stated result this covering map should be infinite-sheeted. Easy to see that a homomorphism is an overlay map.

Overlay concerns!

Let Y be compact, then YES if and only if f is an overlay map (in 2013 by K. E. - V. Matijević [EM2]). In addition, there exists a covering map over each solenoid such that the map cannot be an overlay map.

According to the previously stated result this covering map should be infinite-sheeted. Easy to see that a homomorphism is an overlay map.

Overlay concerns!

Let Y be compact, then YES if and only if f is an overlay map (in 2013 by K. E. - V. Matijević [EM2]). In addition, there exists a covering map over each solenoid such that the map cannot be an overlay map.

According to the previously stated result this covering map should be infinite-sheeted. Easy to see that a homomorphism is an overlay map.

Covering map and Overlay

In 1972 R. Fox [F] introduced the notion of an overlay which is stronger than that of a covering map. Let $f: X \to Y$ be a continuous map and S a set of cardinality $s = \operatorname{card} S$. Then f is an s-sheeted covering map, if there exist open coverings \mathcal{B} of Y and \mathcal{A} of X such that

(C1) $f^{-1}(B) = \bigcup_{\sigma \in S} A_B^{\sigma}$ for $B \in \mathcal{B}$; (C2) $A_B^{\sigma} \cap A_B^{\tau} = \emptyset$ for distinct $\sigma, \tau \in S$ and $B \in \mathcal{B}$; (C3) $f|_{A_B^{\sigma}} : A_B^{\sigma} \to B$ is a homeomorphism for each $A_B^{\sigma} \in \mathcal{A}$. A covering map f is an overlay, in addition if the following additional condition is fulfilled:

(C4) If $B, B' \in \mathcal{B}$ and $B \cap B' \neq \emptyset$, then every $\sigma \in S$ admits a unique $\sigma' \in S$ such that $A_B^{\sigma} \cap A_{B'}^{\sigma'} \neq \emptyset$.

Covering map and Overlay

In 1972 R. Fox [F] introduced the notion of an overlay which is stronger than that of a covering map. Let $f: X \to Y$ be a continuous map and S a set of cardinality $s = \operatorname{card} S$. Then f is an s-sheeted covering map, if there exist open coverings \mathcal{B} of Y and \mathcal{A} of X such that

(C1) $f^{-1}(B) = \bigcup_{\sigma \in S} A_B^{\sigma}$ for $B \in \mathcal{B}$; (C2) $A_B^{\sigma} \cap A_B^{\tau} = \emptyset$ for distinct $\sigma, \tau \in S$ and $B \in \mathcal{B}$; (C3) $f|_{A_B^{\sigma}} : A_B^{\sigma} \to B$ is a homeomorphism for each $A_B^{\sigma} \in \mathcal{A}$. A covering map f is an overlay, in addition if the following additional condition is fulfilled:

(C4) If $B, B' \in \mathcal{B}$ and $B \cap B' \neq \emptyset$, then every $\sigma \in S$ admits a unique $\sigma' \in S$ such that $A_B^{\sigma} \cap A_{B'}^{\sigma'} \neq \emptyset$.

New question

Let $f: X \to Y$ be an overlay map from a connected space X over a topological group Y. Can we induce a group-strucure on X so that X is a topological group and f is a homomorphism?

This general question is open! No counter example is known (at least to us).

New question

Let $f: X \to Y$ be an overlay map from a connected space X over a topological group Y. Can we induce a group-strucure on X so that X is a topological group and f is a homomorphism?

This general question is open! No counter example is known (at least to us).

New question

Let $f: X \to Y$ be an overlay map from a connected space X over a topological group Y. Can we induce a group-strucure on X so that X is a topological group and f is a homomorphism?

This general question is open! No counter example is known (at least to us).

Theorem 1. Suppose that X is f-compactly openly connected. Then, YES if and only if f is an overlay map.

X is f-compactly connected, if for each pair $x, y \in X$ there exists a connected set C such that $x, y \in C$ and $\overline{f(C)}$ is compact. The word "openly" means that C is open.

Theorem 2. Suppose that X is locally f-compactly connected, then YES.

The local f-compact connectivity is a local version of f-compact connectivity and is equivalent to the local compact connectivity, i.e.

 $orall U(x \in U \ o \ \exists V(x \in V \subseteq U \land \forall y \in V \exists C(x, y \in C \subseteq U \land C)) \ C \ ext{is compact and connected })))$

Theorem 1. Suppose that X is f-compactly openly connected. Then, YES if and only if f is an overlay map.

X is f-compactly connected, if for each pair $x, y \in X$ there exists a connected set C such that $x, y \in C$ and $\overline{f(C)}$ is compact. The word "openly" means that C is open.

Theorem 2. Suppose that X is locally f-compactly connected, then YES.

The local f-compact connectivity is a local version of f-compact connectivity and is equivalent to the local compact connectivity, i.e.

 $orall U(x \in U \ o \ \exists V(x \in V \subseteq U \land \forall y \in V \exists C(x, y \in C \subseteq U \land C)) \ C \ ext{is compact and connected })))$

Theorem 1. Suppose that X is f-compactly openly connected. Then, YES if and only if f is an overlay map.

X is f-compactly connected, if for each pair $x, y \in X$ there exists a connected set C such that $x, y \in C$ and $\overline{f(C)}$ is compact. The word "openly" means that C is open.

Theorem 2. Suppose that X is locally f-compactly connected, then YES.

The local f-compact connectivity is a local version of f-compact connectivity and is equivalent to the local compact connectivity, i.e.

 $orall U(x \in U \ o \ \exists V(x \in V \subseteq U \land \forall y \in V \exists C(x, y \in C \subseteq U \land C)) \ C \ ext{is compact and connected })))$

Theorem 1. Suppose that X is f-compactly openly connected. Then, YES if and only if f is an overlay map.

X is f-compactly connected, if for each pair $x, y \in X$ there exists a connected set C such that $x, y \in C$ and $\overline{f(C)}$ is compact. The word "openly" means that C is open.

Theorem 2. Suppose that X is locally f-compactly connected, then YES.

The local f-compact connectivity is a local version of f-compact connectivity and is equivalent to the local compact connectivity, i.e.

 $orall U(x \in U \rightarrow \exists V(x \in V \subseteq U \land \forall y \in V \exists C(x, y \in C \subseteq U \land C \text{ is compact and connected })))$

New results continued

By Theorem 1 and the Iwasawa structure theorem for locally compact connected groups we have,

Theorem 3. Let f be a covering map from a connected space X to a locally compact group Y. The following are equivalent:

- (1) **YES**;
- (2) there exists a unique group structure on X such that X is a topological group and f is a homomorphism;

(3) **f** is an overlay map;

The Iwasawa theorem of connected locally compact groups

Let X be a connected locally compact group. Then there exists a connected compact subgroup K and a subspace S such that X = SK and S contains the identity and is homeomorphic to an euclidean space or a point. In addition, for each $x \in X$ there exist unique $s \in S$ and $k \in K$ such that x = sk.

By the Iwasawa theorem every connected total space over a locally compact connected group is compactly openly connected.

The total spaces constructed over solenoids are not compactly connected.

The Iwasawa theorem of connected locally compact groups

Let X be a connected locally compact group. Then there exists a connected compact subgroup K and a subspace S such that X = SK and S contains the identity and is homeomorphic to an euclidean space or a point. In addition, for each $x \in X$ there exist unique $s \in S$ and $k \in K$ such that x = sk.

By the Iwasawa theorem every connected total space over a locally compact connected group is compactly openly connected.

The total spaces constructed over solenoids are **not** compactly connected.

The group operation using lifting of paths

The group operation using lifting of \mathcal{B} -chains Main idea of proofs of Theorems 1 and 2

Choose a suitable symmetric neighborhood V of $e \in Y$.

A sequence $a_0, \dots, a_n \in X$ is an \mathcal{A} -sequence with respect to V, if it is the unique lift of the sequence $f(a_0), \dots, f(a_n)$ where

 $f(a_{i+1}) \in f(a_i)V \cap Vf(a_i)$

and $Vf(a_i)V \subseteq B$ for some $B \in \mathcal{B}$.

Replace paths by pointed A-chains and B-ones and define the operation similarly.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

The group operation using lifting of \mathcal{B} -chains Main idea of proofs of Theorems 1 and 2

Choose a suitable symmetric neighborhood V of $e \in Y$.

A sequence $a_0, \dots, a_n \in X$ is an \mathcal{A} -sequence with respect to V, if it is the unique lift of the sequence $f(a_0), \dots, f(a_n)$ where

 $f(a_{i+1}) \in f(a_i)V \cap Vf(a_i)$

and $Vf(a_i)V \subseteq B$ for some $B \in \mathcal{B}$.

Replace paths by pointed \mathcal{A} -chains and \mathcal{B} -ones and define the operation similarly.

The group operation using lifting of \mathcal{B} -chains Main idea of proofs of Theorems 1 and 2

Choose a suitable symmetric neighborhood V of $e \in Y$.

A sequence $a_0, \dots, a_n \in X$ is an \mathcal{A} -sequence with respect to V, if it is the unique lift of the sequence $f(a_0), \dots, f(a_n)$ where

 $f(a_{i+1}) \in f(a_i)V \cap Vf(a_i)$

and $Vf(a_i)V \subseteq B$ for some $B \in \mathcal{B}$.

Replace paths by pointed A-chains and B-ones and define the operation similarly.

Let K be a compact subset of Y and U be a neighborhood of $e \in Y$. Then there exists a symmetric neighborhood V of $e \in Y$ such that $VyVy^{-1} \subseteq U$ for all $y \in K$.

For given a_i, b_j , suppose that $a_{i+1} \in a_i V \cap V a_i$ and $b_{j+1} \in b_j V \cap V b_j$. The four points $a_i b_j, a_i b_{j+1}, a_{i+1} b_j, a_{i+1} b_{j+1}$ belong to one $B \in \mathcal{B}$ and hence can be lifted to one sheet in \mathcal{A} .

Let K be a compact subset of Y and U be a neighborhood of $e \in Y$. Then there exists a symmetric neighborhood V of $e \in Y$ such that $VyVy^{-1} \subseteq U$ for all $y \in K$.

For given a_i, b_j , suppose that $a_{i+1} \in a_i V \cap V a_i$ and $b_{j+1} \in b_j V \cap V b_j$. The four points $a_i b_j, a_i b_{j+1}, a_{i+1} b_j, a_{i+1} b_{j+1}$ belong to one $B \in \mathcal{B}$ and hence can be lifted to one sheet in \mathcal{A} .

Key Lemmas for Proof of Theorem 3

1. Let X be a connected space and $f: X \to Y$ a covering map to a locally compact group Y = PK. and Then $f^{-1}(K)$ is connected and consequently X is f-compactly openly connected.

2. Let $f: X \to Y$ be a covering homomorphism. If C is a compact subgroup of X, then the restriction $f|C: C \to f(C)$ is a covering homomorphism.

3. If two group operations \circ and \cdot on a locally compact group $P \circ K$ conincide on P and K respectively, then \circ and \cdot concide.

Key Lemmas for Proof of Theorem 3

1. Let X be a connected space and $f: X \to Y$ a covering map to a locally compact group Y = PK. and Then $f^{-1}(K)$ is connected and consequently X is f-compactly openly connected.

2. Let $f: X \to Y$ be a covering homomorphism. If C is a compact subgroup of X, then the restriction $f|C: C \to f(C)$ is a covering homomorphism.

3. If two group operations \circ and \cdot on a locally compact group $P \circ K$ conincide on P and K respectively, then \circ and \cdot concide.

Key Lemmas for Proof of Theorem 3

1. Let X be a connected space and $f: X \to Y$ a covering map to a locally compact group Y = PK. and Then $f^{-1}(K)$ is connected and consequently X is f-compactly openly connected.

2. Let $f: X \to Y$ be a covering homomorphism. If C is a compact subgroup of X, then the restriction $f|C: C \to f(C)$ is a covering homomorphism.

3. If two group operations \circ and \cdot on a locally compact group $P \circ K$ conincide on P and K respectively, then \circ and \cdot concide.

Open problems

Question 1. Let $f: X \to Y$ be an overlay map from a connected space X to a topological group Y. Is there a group-structure on X such that X is a topological group and f is a homomorphism?

Question 2. Does there exist an overlay map $f: X \to Y$ from a connected space X to a topological group Y which admits two different group-structures on X such that X is a topological group and f is a homomorphism?

There are problems of uniqueness of overlay pairs up to equivalence are left. For instance, we don't know whether a covering homomorphism can be an overlay map with a non-equivalent overlay pair from the standard overlay one.

Open problems

Question 1. Let $f: X \to Y$ be an overlay map from a connected space X to a topological group Y. Is there a group-structure on X such that X is a topological group and f is a homomorphism?

Question 2. Does there exist an overlay map $f: X \to Y$ from a connected space X to a topological group Y which admits two different group-structures on X such that X is a topological group and f is a homomorphism?

There are problems of uniqueness of overlay pairs up to equivalence are left. For instance, we don't know whether a covering homomorphism can be an overlay map with a non-equivalent overlay pair from the standard overlay one.

Open problems

Question 1. Let $f: X \to Y$ be an overlay map from a connected space X to a topological group Y. Is there a group-structure on X such that X is a topological group and f is a homomorphism?

Question 2. Does there exist an overlay map $f: X \to Y$ from a connected space X to a topological group Y which admits two different group-structures on X such that X is a topological group and f is a homomorphism?

There are problems of uniqueness of overlay pairs up to equivalence are left. For instance, we don't know whether a covering homomorphism can be an overlay map with a non-equivalent overlay pair from the standard overlay one.

References

[EM1] K. Eda and V. Matijević, Finite-sheeted covering maps over 2-dimensional connected, compact Abelian groups, Topology Appl. 153 (2006), 1033-1045. [EM2] K. Eda and V. Matijević, Covering maps over solenoids which are not covering homomorphisms, Fund. Math. 221 (2013), 69-82. [F1] R. H. Fox, On shape, Fund. Math. 74 (1972), 47-71. [F2] R. H. Fox, Shape theory and covering spaces, Lecture Notes in Math., Vol. 375, Springer, Berlin, 1974, pp 77-90. [GG] S. A. Grigorov and R. N. Gumerov, On the structure of finite coverings of compact connected groups, Topology Appl. 153 (2006), 3598-3614.