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Abstract. We consider open infinite gropes and prove that every
continuous map from the minimal grope to another grope is nul-
homotopic unless the other grope has a ‘branch’ which is a copy of
the minimal grope. Since every grope is the classifying space of its
fundamental group, the problem is translated to group theory and
a suitable block cancellation of words is used to obtain the result.
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1. Introduction

Here we study (open infinite) gropes (a recent short note on gropes in
general is [12]) and in particular we consider the question whether there
exists a homotopically nontrivial map from the minimal grope to another
grope.
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Gropes are 2-dimensional CW complexes with infinitely many cells con-
structed in the following way. Start with a circle, attach a disk with handles
onto the circle, onto each handle curve of the previous stage attach another
disk with handles, etc. In the case of the minimal grope (also called the
fundamental grope) always attach disks with only one handle.

Gropes were introduced by Štan’ko [11]. They have an important role
in geometric topology ([3]; for more recent use in dimension theory see [5]
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and [4]). Their fundamental groups, which we call grope groups, were used
by Berrick and Casacuberta to show that the plus-construction in algebraic
K-theory is localization [2]. Recently [1] such a group has appear in the
construction of a perfect group with a nonperfect localization.

Gropes are classifying spaces of their fundamental groups, so the ques-
tion about the existence of homotopically nontrivial maps from the minimal
grope to another grope is equivalent to the existence of nontrivial homomor-
phisms from the fundamental group of the minimal grope (which we call the
minimal grope group) to the fundamental group of the other grope. Note
that the fundamental group of the disk with one handle is the free group
on two generators and that the boundary circle of this disk is homotopic to
the commutator of the two free generators of the fundamental group. The
disk with n-handles is homotopic to the one-point-union of n-disks with one
handle and the boundary circle of the disk with n-handles is homotopic to
the product of n commutators of the free generators of the fundamental
group. Thus the fundamental group of a grope is the direct limit of free
groups where the connecting homomorphisms make each generator into the
product of commutators of new free generators.

In algebra these groups first appeared in the proof of a lemma by Heller
[8] as follows. Let ϕ0 be a homomorphism from the free group F0 on one
generator α to any perfect group P . Let

ϕ0(α) = [p0, p1][p2, p3] · · · [p2n−2, p2n−1] ∈ P. (∗)

Then we can extend ϕ0 to a homomorphism ϕ1 of a (nonabelian) free group
F1 on 2n generators β0, . . . , β2n−1 by setting ϕ1(βi) = pi. Note that ϕ0(α)
may have several different expressions as a product of commutators, so we
may choose any; even if some of the elements p1, . . . , p2n−1 coincide, we take
distinct elements βi, i = 1, . . . , 2n − 1 as the generators of F1. Now we
repeat the above construction for every homomorphism ϕ1|〈βi〉 of the free
group on one generator to P and thus obtain a homomorphism ϕ2 : F2 → P .
Repeating the above construction we obtain a direct system of inclusions of
free groups F1 → F2 → F3 → · · · and homomorphisms ϕn : Fn → P . The
direct limit of Fn is a locally free perfect group D and every group obtained
by the above construction is called a grope group (and its classifying space is
a grope). This construction shows therefore that every homomorphism from
a free group on one generator to a perfect group P can be extended to a
homomorphism from a grope group to P . Note that in case the perfect group
P has the Ore property ([9], [6]) that every element in P is a commutator, in
the above process (∗) we can choose every generator in the chosen basis of Fn
to be a single commutator of two basis elements of Fn+1. The group obtained
in this way is the minimal grope group M . The group M is generated by
finite nonempty words w in the alphabet {0, 1} with relations w = [w0, w1],
other grope groups are more difficult to define in terms of a presentation,
we give a definition in Section 2. Clearly every grope group admits many
epimorphisms onto M .
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The main result of this paper is that the minimal grope admits a ho-
motopically nontrivial map to another grope only if the other grope has a
‘branch’ which is another copy of the minimal grope. This seems to be one
of the very few results about the existence of maps between wild spaces. Ad-
ditionally, we prove that there are uncountably many self-homotopy equiv-
alences of the minimal grope group.

In group theoretic language the main result can be formulated as follows
(supporting definitions will appear in the first part of Section 2).

Theorem 1.1. The minimal grope group M = GS0 admits a nontrivial
homomorphism into a grope group GS, if and only if there exists s ∈ S such
that a frame {t ∈ Seq(N) : st ∈ S} is equal to S0.

This implies, in particulary, that there exist at least two non-isomorphic
grope groups (and two gropes which are not homotopically equivalent).

Corollary 1.2. The minimal grope group M = GS0 admits a nontrivial
homomorphism into a grope group GS, if and only if GS is isomorphic to
the free product M ∗K for a grope group K.

In Section 2 we give a systematic definition of grope groups (the combina-
torics of which mimics the contruction of gropes) and prove some technical
lemmas. In Section 4 we prove Theorem 1.1.

2. Systematic definition of grope groups and basic facts

For every positive integer n let n = {0, 1, . . . , n − 1}. The set of non-
negative integers is denoted by N. We denote the set of finite sequences of
elements of a set X by Seq(X) and the length of a sequence s ∈ Seq(X) by
lh(s). The empty sequence is denoted by ∅.

For a non-empty set A let L(A) be the set {a, a− : a ∈ A}, which we call
the set of letters. We identify (a−)− with a. Let W(A) = Seq(L(A)), which
we call the set of words. For a word W ≡ a0 · · · an, define W− ≡ a−n · · · a−0 .
We write W ≡ W ′ for identity in W(A) while W = W ′ for identity in the
free group generated by A. For instance aa− = ∅ but aa− 6≡ ∅. We adopt
[a, b] = aba−1b−1 as the definition of the commutator. A subword U of a
word W is a subsequence of W , i.e. W ≡ XUY for some words X and Y .

To describe all the grope groups we introduce some notation.

Definition 2.1. A grope frame S is a subset of Seq(N) satisfying:

(1) ∅ ∈ S,
(2) for every s ∈ S there exists n > 0 such that 2n = {i ∈ N : si ∈ S},
(3) if the concatenation st ∈ S, for s, t ∈ Seq(N), then also s ∈ S.

In some situations it may be useful to denote the last element in (2) of
the above definition by ε(s) = 2n− 1 where 2n = {i ∈ N : si ∈ S}. If there
is no ambiguity we write ε = ε(s).

For each grope frame S we induce formal symbols cSs for s ∈ S and
define ESm = {cSs : lh(s) = m, s ∈ S} and a free group FSm = 〈ESm〉. Then
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define eSm : FSm → FSm+1 by eSm(cSs ) = [cSs0, c
S
s1] · · · [cSs ε(s)−1, c

S
s ε(s)]. Let GS =

lim−→(FSm, e
S
m : m ∈ N) and eSm,n = eSn−1 · · · eSm for m ≤ n and every such group

GS is a grope group.
For s ∈ S, s is binary branched, if {i ∈ N : si ∈ S} = 2, i.e. ε(s) = 1.

Let S0 be the grope frame such that every s ∈ S0 is binary branched, i.e.
S0 = Seq(2). Then GS0 = M is the so-called minimal grope group. Since
eSm is injective, we frequently regard FSm as a subgroup of GS (and similarly
Fm as a subgroup of Fn for m < n).

For a non-empty word W the head of W is the left most letter b of W , i.e.
W ≡ bX for some word X, and the tail of W is the right most letter c of W ,
i.e. W ≡ Y c for some word Y . When AB ≡ W , we say that A is the head
part of W and B is the tail part of W . Our arguments mostly concern word
theoretic arguments and we refer the reader to [7] or [10] for basic notions
of words.

For a word W ∈ W(ESm) and n ≥ m, we let eSm,n[W ] be a word in W(ESn )

defined as follows: eSm,m[W ] ≡ W and eSm,n+1[W ] is obtained by replacing

every ct in eSm,n[W ] by

(P0) cSt0c
S
t1(c

S
t0)
−(cSt1)

− · · · cSt ε−1cSt ε(cSt ε−1)−(cSt ε)
−

and every (cSt )− by

(P1) cSt εc
S
t ε−1(c

S
t ε)
−(cSt ε−1)

− · · · cSt1cSt0(cSt1)−(cSt0)
−

respectively.
We drop the superscript S , if no confusion can occur.

Observation 2.2. Let n > m + 1 and let W ≡ em+1,n[cs0]. Suppose that
X ∈ W(En) is a reduced word and X ∈ Fm. When W is a subword of X,
W may appear in

(C0) em,n[cs] = em+1,n[cs0cs1c
−
s0c
−
s1 · · · csε−1csεc

−
sε−1c

−
sε]

or
(C1) em,n[c−s ] = em+1,n[csεcsε−1c

−
sεc
−
sε−1 · · · cs1cs0c

−
s1c
−
s0].

The successive letter to W in (C0) is head(em+1,n[cs1]) = cs10...0, but in
(C1) it is head(em+1,n[c−s1]) = head(em+2,n[cs1ε(s1)]) = cs1ε(s1)0...0. Thus
the successive letter to W in X is not uniquely determined. However, if
X ≡ WY for some Y , the case (C1) can not appear, so the head of Y is
uniquely determined as cs10···0.

Similarly, the preceding letter to W is not uniquely determined – there are
four possibilities:

• tail(em+1,n[cs1]) = tail(em+2,n[c−s1ε(s1)]) = tail(em+3,n[c−s1ε(s1)0]) =

c−s1ε(s1)0...0 in case (C1).

• If X ≡WY for some Y , there is no preceding letter to W .
• tail(em,n[ct]) = tail(em+1,n[c−tε]) = tail(em+2,n[c−tε0]) = c−tε0...0 in case

(C1) if X = em+1,n[ZctcsY ] for some Z, Y .
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• tail(em,n[c−t ]) = tail(em+1,n[c−t0]) = c−t0...0 in case (C1) if X = em+1,n[Zc−t csY ]
for some Z, Y .

However, the preceding letter to W determines the succesive letter to W
uniquely:

• If the preceding letter to W is c−s1ε(s1)0...0 then we are in (C1).

• In all other cases we are in (C0).

Observation 2.3. A letter cs0···0 ∈ W(En) for lh(s) = m possibly appears
in em,n[W0] in the following cases. When n = m + 1, cs0 appears once in
em,n[cs] and also once in em,n[c−s ]. According to the increase of n, cs0···0
appears in many parts. cs0···0 appears 2n−m−1-times in em,n[cs] and also
2n−m−1-times in em,n[c−s ].

The following lemma is easy to verify.

Lemma 2.4. For a word W ∈ W(Em) and n ≥ m, em,n[W ] is reduced, if
and only if W is reduced.

Lemma 2.5. For a reduced word V ∈ W(En) and n ≥ m, V ∈ Fm if and
only if there exists W ∈ W(Em) such that em,n[W ] ≡ V .

Proof. The sufficiency is obvious. To see the other direction, let W be a
reduced word in W(Em) such that em,n[W ] = V in Fn. By Lemma 2.4
em,n[W ] is reduced. Since every element in Fn has a unique reduced word
in W(En) presenting itself, we have em,n[W ] ≡ V . �

In the case of the minimal grope group we have

e0,2[c∅] = c00c01c
−
00c
−
01c10c11c

−
10c
−
11c01c00c

−
01c
−
00c11c10c

−
11c
−
10,

e0,2[c
−
∅ ] = c10c11c

−
10c
−
11c00c01c

−
00c
−
01c11c10c

−
11c
−
10c01c00c

−
01c
−
00.

We see that the subword c00c01 (and similarly every subword of any e01[c
±
s ])

appears in e0,2[c∅] and in e0,2[c
−
∅ ]. On the other hand the subword c−01c10

(and similarly every subword of e02[c∅] which is not a subword of e01[c
±
s ])

does not appears in e0,2[c
−
∅ ]. We generalise this observation as follows.

Observation 2.6. Let us show that if a subword W of em,n[d] for some
d = c±s is not a subword of em+1,n[csk] or em+1,n[c−sk], then the word W
determines the letter d to be either cs or c−s :

In this case W ≡ W0W1W2, where W0 might be empty while for i = 1, 2
the subword Wi is nonempty and is the maximal subword of W which is
contained in em+1,n[cσiski ] for some σi = ± and some ki ∈ {0, . . . , ε(s)}. We
have the following four possibilities.

(1) σ1 = σ2 = +: If k2 = k1+1, then k1 is even and d = cs. If, however,
k2 = k1 − 1, then k1 is odd and d = c−s .

(2) σ1 = + and σ2 = −: If k2 = k1 − 1, then k1 is odd and d = cs. If,
however, k2 = k1 + 1, then k1 is even and d = c−s .
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(3) σ1 = − and σ2 = +: If k2 = k1 + 1, then k1 is odd and d = cs. If,
however, k2 = k1 − 1, then k1 is even and d = c−s .

(4) σ1 = σ2 = −: If k2 = k1+1, then k1 is even and d = cs. If, however,
k2 = k1 − 1, then k1 is odd and d = c−s .

Hence the word W determines the letter d uniquely.

Motivated by this observation we state the following technical definition.

Definition 2.7. Let W0 ∈ W(Em) and n > m. A subword V ∈ W(En) of
em,n[W0] is small, if there exists a letter cs or c−s in W0 and i ∈ N such that
V is a subword of either em+1,n[csi] or em+1,n[c−si].

In particular, the word W in Observation 2.6 is not small. Note that
being small depends on m. In the following usage of this notion m and n
are always fixed in advance.

Note that a letter cs0···0 ∈ W(En) for lh(s) = m possibly appears in
em,n[W0] in the following cases. When n = m + 1, cs0 appears once in
em,n[cs] and also once in em,n[c−s ]. According to the increase of n, cs0···0
appears in many parts. cs0···0 appears 2n−m−1-times in em,n[cs] and also
2n−m−1-times in em,n[c−s ]. This is a particular case where a subword is
small.

For an arbitrary reduced word W ∈ W(En) small subwords inW(En) are
not defined. However, according to Lemma 2.5, if also W ∈ Fm, m < n,
a subword of W ∈ W(En) is small considering W ≡ em,n[W0] for a word
W0 ∈ W(Em).

Lemma 2.8. Let m < n and A be a non-empty word in W(En). Let X0AY0
and X1AY1 be reduced words in W(En) satisfying X0AY0, X1AY1 ∈ Fm.

(1) If A is not small, X0A /∈ Fm and X1A /∈ Fm, then head(Y0) =
head(Y1).

(2) Let X0 be an empty word. If A is not small and A /∈ Fm,then
head(Y0) = head(Y1).

(3) Let X0 and X1 be empty words. If A /∈ Fm, then head(Y0) =
head(Y1).

Proof. (1) Since X0AY0 ∈ Fm but X0A /∈ Fm, we have a letter c ∈ Em∪E−m
and words U0, U1, U2 such that U1 6≡ ∅, U2 6≡ ∅, X0A ≡ U0U1 and U1U2 ≡
em,n[c]. Since A is not small, c and U0, U1, U2 are uniquely determined
by A. Since the same thing holds for X1AY1, we have the conclusion by
Observation 2.2 for n > m+ 1. (The case for n = m+ 1 is easier.)

(2) Since AY0 ∈ Fm, A /∈ Fm and A is not a small word, for any word B
such that BA is reduced we have BA /∈ Fm. In particular X1A /∈ Fm and
the conclusion follows from (1).

(3) Since AY0 ∈ Fm, there are A0 and non-empty U0, U1 such that A0 ∈
Fm, A ≡ A0U0 and U0U1 ≡ em,n[c] for some c ∈ Em ∪ E−m. Since A /∈ Fm,
the head of U1 is uniquely determined by A and hence the heads of Y0 and
Y1 are the same (Observation 2.2). �
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Lemma 2.9. Let m < n and A,X, Y ∈ W(En) and AXA−Y ∈ Fm. If
AXA−Y is reduced and A is not small, then AXA− ∈ Fm and Y ∈ Fm.

Proof. The head of the reduced word in W(Em) for the element AXA−Y
is cs or c−s for cs ∈ Em. According to cs or c−s , A ≡ em+1,n[cs0]Z or
em+1,n[csk]Z for a non-empty word Z, where k + 1 = {i ∈ N : si ∈ S} is
even. Then A− ≡ Z−em+1,n[c−s0] or A− ≡ Z−em+1,n[c−sk] and hence AXA− ∈
Fm and consequently Y ∈ Fm. �

Lemma 2.10. For e 6= x ∈ FSm and u ∈ GS, uxu−1 ∈ FSm implies u ∈ FSm.

Proof. There exists n ≥ m such that u ∈ Fn. Let W be a cyclically reduced
word and V be a reduced word such that x = VWV − in Fm and VWV − is
reduced. Then em,n(x) = em,n[V ]em,n[W ]em,n[V ]− and em,n[V ] is reduced
and em,n[W ] is cyclically reduced by Lemma 2.4. Let U be a reduced word for

u in Fn. Let k = lh(U). Then em,n(x2k+1) = em,n[V ]em,n[W ]2k+1em,n[V ]−

and the right hand term is a reduced word. Hence the reduced word
for uxku− of the form Xem,n[W ]Y , where Uem,n[V ]em,n[W ]k = X and

em,n[W ]kem,n[V ]−U− = Y . Since uxku−1 ∈ Fm, X ∈ Fm and Y ∈ Fm.
Now we have Uem,n[V ] ∈ em,n(Fm) and hence U ∈ em,n(Fm), which implies
the conclusion. �

Lemma 2.11. Let UWU− be a reduced word in W(En). If UWU− ∈ Fm
and W is cyclically reduced, then U,W ∈ Fm.

Proof. If U is empty or n = m, then the conclusion is obvious. If U ∈ Fm,
then WU− ∈ Fm and so W ∈ Fm. Suppose that U is U 6∈ Fm. Since
UWU−, UW−U− ∈ Fm, the head of W and that of W− is the same by
Lemma 2.8 (3), which contradicts that W is cyclically reduced. �

Lemma 2.12. Let XY and Y X be reduced words in W(En) for n ≥ m. If
XY and Y X belong to Fm, then both of X and Y belong to Fm.

Proof. We may assume n > m. When n > m, the head of em,n[W ] for
a non-empty word W ∈ W(Em) is cs0···0 or csk0···0 where lh(s) = m and
k+1 = {i ∈ N : si ∈ S} is even. (When n = m+1, there appears no 0 · · · 0.)
Since X−Y − ∈ Fm and X−Y − is reduced, the tail of X is of the form c−s0···0
or c−sk0···0. We only deal with the former case. Suppose that X /∈ Fm. Since

XY ∈ Fm and XY is reduced, X ≡ Zem+1,n[cs1c
−
s0] for some Z. This implies

X− ≡ em+1,n[cs0c
−
s1]Z

−, which contradicts that X−Y − ∈ Fm and X−Y − is
reduced. Now we have X,Y ∈ Fm. �

Lemma 2.13. Let m < n and A,B,C ∈ W(En) such that ABCA−B−C− ∈
Fm and is nontrivial. If ABCA−B−C− is a reduced word and at least one
of A,B,C is not small, then A,B,C ∈ Fm.

Proof. Since ABCA−B−C− 6= e, at most one of A,B,C is empty. When C
is empty, the conclusion follows from Lemma 2.9 and the fact that BAB−A−

is also reduced and BAB−A− ∈ Fm.
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Now we assume that A,B,C are non-empty. If A is not small, then
ABCA− ∈ Fm and B−C− ∈ Fm by Lemma 2.9. Since BC is cyclically
reduced, A ∈ Fm and BC ∈ Fm by Lemma 2.11. The conclusion follows
from Lemma 2.12. In the case that C is not small, the argument is similar.
The remaining case is when A and C are small. Then ABCA−B−C− ∈ Fm
and CBAC−B−A− ∈ Fm imply A ≡ C, which contradicts the assumption
that ABCA−B−C− is reduced. �

Lemma 2.14. Let m < n and A,B,C ∈ W(En) such that ABCA−B−C− ∈
Fm and is nontrivial. If ABCA−B−C− is a reduced word and A,B,C are
small, then one of A,B,C is empty.

Assume C is empty. Then there exists cs ∈ Em such that s is binary
branched and either

A ≡ em+1,n[cs0] and B ≡ em+1,n[cs1],

or

A ≡ em+1,n[cs1] and B ≡ em+1,n[cs0].

Proof. Since A,B,C are small, all the words A,B,C and their inverses must
be subwords of em+1,n[csi], i = 0, 1, or em+1,n[c−si], for an element cs ∈ Em,
and in particular that either

ABCA−B−C− = em,n(cs) = em+1,n[cs0cs1c
−
s0c
−
s1]

or
ABCA−B−C− = em,n(c−s ) = em+1,n[cs1cs0c

−
s1c
−
s0],

where the left most and right most terms are reduced words. Note that if
the cardinality of {i ∈ N : si ∈ S} were greater than 2, one of A,B,C would
not be small; hence in our case s is binary branched. We only deal with
the first case. Then ABC ≡ em+1,n[cs0cs1] and A−B−C− ≡ em+1,n[c−s0c

−
s1].

In case A,B,C are non-empty, A is a proper subword of em+1,n[cs0] or C is
a proper subword of em+1,n[cs1]. In either case A−B−C− ≡ em+1,n[c−s0c

−
s1]

does not hold. Hence one of A,B,C is empty. We may assume C is empty.
Since A,B are small, A ≡ em+1,n[cs0] and B ≡ em+1,n[cs1]. �

3. Block reduction

In this section we develop the method which we use to prove Theorem 1.1.
Using letter reduction Wicks [13] showed that every commutator in an arbi-
trary free group is cyclicaly equivalent to a word of the form ABCA−B−C−.
We generalise his appoach in order to keep track of words in Fn which be-
long also in Fm, m < n. In particular, reducing words by certain blocks of
letters we show that for words A,B,X, Y ∈ W(En) such that the reduced
word of Y −ABYX−A−B−X is cyclicaly reduced and is an element of Fm,
then either both elements Y −ABY and X−A−B−X are in Fm or the entire
word is a generator cs of Fm or its inverse c−s .

Lemmas 3.1, 3.2, 3.3 and 3.4 show connections between our reduction
steps in case at least one of X and Y is empty. Based on the results of the
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previous section, these lemmas can be proved fairly easily, but they show
what the block-wise reductions are. Lemma 3.5 corresponds to the final
step, i.e. when we have the reduced word. Lemmas 3.6 and 3.7 correspond
to the case that X and Y are non-empty. In lemmas of this section we
assume m < n.

Lemma 3.1. Let A,B ∈ W(En) be non-empty reduced words such that
ABA−B− 6= e and AB,A−B− are reduced words. Then the following hold:

(1.1) If B ≡ B0A, then B0 is non-empty, AB0, A
−B−0 are reduced words

and the identity AB0A
−B−0 = ABA−B− holds. In addition if AB0,

A−B−0 ∈ Fm, then AB,A−B− ∈ Fm.
(1.2) If A ≡ A0B, then A0 is non-empty, A0B, A−0 B

− are reduced words
and the identity A0BA

−
0 B
− = ABA−B− holds. In addition if A0B,

A−0 B
− ∈ Fm, then AB,A−B− ∈ Fm.

(1.3) If A ≡ A0Z and B ≡ B0Z for non-empty words A0, B0 such that
B0A

−
0 is reduced, then A0ZB0A

−
0 Z
−B−0 is reduced and the identity

A0ZB0A
−
0 Z
−B−0 = ABA−B− holds. In addition if A0, B0, Z ∈ Fm,

then AB,A−B− ∈ Fm.

Proof. We only show (1.1). The non-emptiness of the word B0 follows from
ABA−B− 6= e. Since AB and A−B− are reduced, AB0 and A−B−0 are
cyclically reduced and hence the second statement follows from Lemma 2.12.

�

Lemma 3.2. Let A,B,C ∈ W(En) be reduced words (possibly empty) such
that ABCA−B−C− 6= e and AB, CA−B−C− are reduced words. Then the
following hold:

(2.1) If B ≡ B0C
−, then AB0, A−CB−0 C

− are reduced words and the
identity AB0A

−CB−0 C
− = ABCA−B−C− holds. In addition if

AB0A
−, CB−0 C

− ∈ Fm, then AB,CA−B−C− ∈ Fm.
(2.2) If C ≡ B−C0, then AC0, A−B−C−0 B are reduced words and the

identity AC0A
−B−C−0 B = ABCA−B−C− holds. In addition if

AC0A
−, B−C−0 B ∈ Fm, then AB,CA−B−C− ∈ Fm.

(2.3) If B ≡ B0Z
− and C ≡ ZC0 for non-empty words B0, C0 and

B0C0 is reduced, then AB0C0A
−ZB−0 C

−
0 Z
− is reduced and the iden-

tity AB0C0A
−ZB−0 C

−
0 Z
− = ABCA−B−C− holds. In addition if

AB0C0A
−, ZB−0 C

−
0 Z
− ∈ Fm, then AB,CA−B−C− ∈ Fm.

Proof. (2.1) The first proposition is obvious. Let B0 ≡ XB1X
− for a

cyclically reduced word B1. Since (AX)B1(AX)−, (CX)B−1 (CX)− ∈ Fm,
AX,CX,B1 ∈ Fm by Lemma 2.11. Now AB = (AX)B1(CX)− ∈ Fm and
CA−B−C− = (CX)(AX)−(CB−0 C

−) ∈ Fm. We see (2.2) similarly.
For (2.3) observe the following. Since both B0 and C0 are non-empty,

B0C0 and B−0 C
−
0 are cyclically reduced. Hence, using Lemmas 2.11 and

2.12, we have (2.3). �
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The next two lemmas are stated so that they can be directly applied
by pattern matching for the reduction steps and so the statements contain
trivial parts.

Lemma 3.3. Let A,B,C ∈ W(En) be reduced words (possibly empty) such
that ABA−CB−C− 6= e and AB, A−CB−C− are reduced. Then the follow-
ing hold:

(3.1) If A ≡ A0B, then A0B, A−0 CB
−C− are reduced and the identity

A0BA
−
0 CB

−C− = ABA−CB−C− holds. In addition if A0BA
−
0 ,

CB−C− ∈ Fm, then ABA−, CB−C− ∈ Fm.
(3.2) If B ≡ B0A, then AB0, CA−B−0 C

− are reduced and the iden-
tity AB0CA

−B−0 C
− = ABA−CB−C− holds. In addition if AB0,

CA−B−0 C
− ∈ Fm, then ABA−, CB−C− ∈ Fm.

(3.3) If B ≡ B0Z and A ≡ A0Z for non-empty words A0, B0 and B0A
−
0

is reduced, then A0ZB0A
−
0 CZ

−B−0 C
− is reduced. In addition if

A0ZB0A
−
0 , CZ

−B−0 C
− ∈ Fm, then ABA−, CB−C− ∈ Fm.

Proof. The proof is not difficult, so we only indicate the main steps. Check-
ing that the words are elements of Fm is a matter of straightforward calcu-
lations.

(3.1) Since A0B is A itself and A−0 CB
−C− is a subword of A−CB−C−,

they are reduced by assumption.
(3.2) Since AB0 is a subword of AB and CA−B0C

− is a subword of
A−CB−C−, they are reduced.

(3.3) Since A0ZB0 is a subword of AB and A−0 CZ
−BC− is a subword of

A−CB−C−, they are reduced and hence A0ZB0A
−
0 CZ

−B−0 C
− is reduced

by the assumption of (3.3). �

The following lemma can be proved similarly to the preceding Lemma 3.3
and we omit its proof.

Lemma 3.4. Let A,B,C ∈ W(En) be reduced words (possibly empty) such
that ABA−CB−C− 6= e and A, BA−CB−C− are reduced words. Then the
following hold:

(4.1) If A ≡ A0B
−, then A0, BA−0 CB

−C− are reduced and the identity
A0BA

−
0 CB

−C− = ABA−CB−C− holds. In addition if A0BA
−
0 ,

CB−C− ∈ Fm, then ABA−, CB−C− ∈ Fm.
(4.2) If B ≡ A−B0, then B0, B0A

−CB−0 AC
− are reduced and the iden-

tity B0A
−CB0AC

− = ABA−CB−C− holds. In addition if B0A
−,

CB−0 AC
− ∈ Fm, then ABA−, CB−C− ∈ Fm.

(4.3) If A ≡ A0Z
− and B ≡ ZB0 for non-empty words A0, B0 and

A0B0 is reduced, then A0B0ZA
−
0 CB

−
0 Z
−C− is reduced and the iden-

tity A0B0ZA
−
0 CB

−
0 Z
−C− = ABA−CB−C− holds. In addition if

A0B0ZA
−
0 , CB

−
0 Z
−C− ∈ Fm, then ABA−, CB−C− ∈ Fm.

The following lemma is used several times in the proof of the main theo-
rem.
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Lemma 3.5. Let A,B,C,D ∈ W(En) be reduced non-empty words.

(1) If ABA−B− is reduced and ABA−B− ∈ Fm and at least one of A,B
is not small, then A,B ∈ Fm.

(2) If ABCA−B−C− is reduced and ABCA−B−C− ∈ Fm at least one
of A,B,C is not small, then A,B,C ∈ Fm.

(3) If CABC−DA−B−D− is reduced and CABC−DA−B−D− ∈ Fm,
then A,B,C,D ∈ Fm.

(4) If CAC−DA−D− is reduced and CAC−DA−D− ∈ Fm, then CAC−,
DA−D− ∈ Fm.

Proof. The statements (1) and (2) are paraphrases of Lemma 2.13.
(3) Let c be the head of C and d be the tail of D−. Since c− immediately
precedes d−, we have CABC−, DA−B−D− ∈ Fm. Since AB, A−B− are
reduced and both A and B are non-empty, AB is cyclically reduced. Now
the conclusion follows from Lemmas 2.11 and 2.12.
The proof of (4) follows the reasoning in the proof of (3). �

Lemma 3.6. Let A−B− and X0ABX
−
0 be reduced words such that X0AB ≡

BAX1 for some X1. If lh(X0) ≤ lh(B), then there exist A′, B′ such that
lh(B′) < lh(B), (A′)−(B′)− and X0A

′B′X−0 are reduced words, X0A
′B′ ≡

B′A′X1, A−B−X0ABX
−
0 = (A′)−(B′)−X0A

′B′X−0 , and A,B ∈ 〈X0, A
′, B′〉.

Proof. First note that lh(X0) 6= lh(B) sinceBX−0 is reduced. Hence lh(B) >
lh(X0). If lh(B) = lh(X0)+ lh(A), then we have X0A ≡ B ≡ AX1 and have
the conclusion, i,e, A′ ≡ A and B′ ≡ ∅.

If lh(B) < lh(X0) + lh(A), we have k > 0 and A0, A1 such that B ≡
X0A0A1, A ≡ (A0A1)

kA0, and A1 is non-empty. (Note that A0 may be
empty.) Let A′ ≡ A0 and B′ ≡ A1. Since lh(X0) + lh(A) = lh(B) + (k −
1)lh(A0A1) + lh(A0), we have B ≡ A1A0X1. Let A′ ≡ A0 and B′ ≡ A1,
then we have the conclusion.

If lh(B) > lh(X0) + lh(A), we have k > 0 and B0, B1 such that B0B1 ≡
X0A, B ≡ (B0B1)

kB0, and B1 is non-empty. Note that B0 may be empty.)
Since lh(B1B0) = lh(AX1), we haveB1B0 ≡ AX1. NowB ≡ X0A(B0B1)

k−1B0 ≡
(B0B1)

k−1B0AX1 holds. Let A′ ≡ A and B′ ≡ (B0B1)
k−1, then we have

the conclusion. �

Note that in Lemma 3.6 we have the following identity A−B−X0ABX
−
0 =

X1X
−
0 = (A′)−(B′)−X0A

′B′X−0 .

Lemma 3.7. Let A,B,X, Y ∈ W(En) be reduced words (possibly empty)
such that X and Y are non-empty, Y −A−B−Y X−ABX 6= e, Y −A−B−Y
and X−ABX are reduced words, and the reduced word of Y −A−B−Y X−ABX
is cyclically reduced.

If Y −A−B−Y X−ABX ∈ Fm, then

(1) Y −A−B−Y,X−ABX ∈ Fm, or
(2) Y −A−B−Y X−ABX is equal to cs or c−s for some s such that lh(s) =

m and s is binary branched.
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Proof. If Y X− is reduced, then Y −A−B−Y X−ABX is cyclically reduced.
By an argument analyzing the head and the tail of Y − and X we can see
Y −A−B−Y,X−ABX ∈ Fm.

Otherwise, in the cancellation of Y −A−B−Y X−ABX the leftmost Y − or
the rightmostX is deleted. Since Y −A−B−Y X−ABX 6= e and lh(Y −A−B−Y ) =
2lh(Y )+ lh(AB) and lh(X−ABX) = 2lh(X)+ lh(AB), lh(X) 6= lh(Y ). We
suppose that lh(X) > lh(Y ), i.e. the head of Y − is deleted. Then we have
X ≡ ZY for a non-empty word Z.

We first analyze the reduced word of A−B−Z−ABZ, where A−B− is
deleted. The head part of Z−AB is BA. Applying Lemma 3.6 for X0 ≡ Z−
and X1 repeatedly, we have reduced words A0 and B0 such that Z−A0B0Z is
reduced, Z−A0B0 ≡ B0A0X1 for someX1, A

−
0 B
−
0 Z
−A0B0Z = A−B−Z−ABZ,

A,B ∈ 〈Z,A0, B0〉 and lh(B0) < lh(Z).
It never occurs that both A0 and B0 are empty, but one of A0 and B0 may

be empty. If B0 = ∅, interchange the role of A0 and B0 and by Lemma 3.6
we can assume B0 is non-empty and lh(B0) < lh(Z).

First we deal with the case A0 is empty. Since the leftmostB−0 is deleted in
the reduction of B−0 Z

−B0Z, we have non-empty Z0 such that Z ≡ Z0B
−
0 and

have a reduced word Z−0 B0Z0B
−
0 with Z−0 B0Z0B

−
0 = B−0 Z

−B0Z. Since the
leftmost Y − is deleted in the reduction of Y −B−0 Z

−B0ZY and Z−0 B0Z0B
−
0 Y

is reduced, Z−0 B0Z0B
−
0 is cyclically reduced and hence the reduced word of

Y −A−B−Y X−ABX is a cyclical transformation of Z−0 B0Z0B
−
0 . By the fact

that Y is the head part of B−0 Z
−B0ZY , Y is of the form (Z−0 B0Z0B

−
0 )kY0

where Y0Y1 ≡ Z−0 B0Z0B
−
0 for some non-empty Y1 and k ≥ 0.

If Y0 is empty, we have Y −A−B−Y X−ABX = Z−0 B0Z0B
−
0 . If one of

Z0 and B0 is not small, then Z0, B0 ∈ Fm by Lemma 2.13 and we have
Y −A−B−Y,X−ABX ∈ Fm by Lemma 3.6 and the fact Y = (Z−0 B0Z0B

−
0 )k.

Otherwise, i.e., when of Z0 andB0 are small, Y −A−B−Y X−ABX = Z−0 B0Z0B
−
0

is equal to cs or c−s for some s such that lh(s) = m and s is binary branched
by Lemma 2.14.

If Y0 ≡ Z−0 , Y0 ≡ Z−0 B0 or Y0 ≡ Z−0 B0Z0, the argument is similar to
the case that Y0 is empty. Otherwise Y0 ends somewhere in the middle of
one of the words Z−0 , B0, Z0 or B−0 . Since the arguments are similar, we
only deal with the case that Y0 ≡ Z−0 B1 where B1B2 ≡ B0 for non-empty
B1 and B2. Then Y −A−B−Y X−ABX = B2Z0B

−
2 B
−
1 Z
−
0 B1 and hence

B2Z0B
−
2 , B

−
1 Z
−
0 B1 ∈ Fm by Lemma 3.5 (4). Let Z1 be a cyclically reduced

word such that Z0 ≡ U−Z1U . Then Z1, B2U
−, UB1 ∈ Fm by Lemma 2.11.

Now

Y −Z0Y = B−1 Z0(B1B2Z
−
0 B
−
2 B
−
1 Z0)

kZ0(Z
−
0 B1B2Z0B

−
2 B
−
1 )kZ−0 B1

= (B−1 Z0B1B2Z
−
0 B
−
2 )kB−1 Z0B1(B2Z0B

−
2 B
−
1 Z
−
0 B1)

k,

Y −B0Y = B−1 Z0(B1B2Z
−
0 B
−
2 B
−
1 Z0)

kB1B2(Z
−
0 B1B2Z0B

−
2 B
−
1 )kZ−0 B1

= B−1 Z0B1(B2Z
−
0 B
−
2 B
−
1 Z0B1)

kB2Z
−
0 B1(B2Z0B

−
2 B
−
1 Z
−
0 B1)

k.
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Hence Y −Z0Y, Y
−B0Y ∈ Fm. Since Z = Z0B

−
0 and A,B are elements of the

subgroup 〈Z,B0〉 generated by Z and B0, we have Y −ABY,X−A−B−X ∈
Fm.

Next we suppose that A0 is non-empty. We have k > 0 and A1 and A2

such that Z− ≡ B0A1A2, A0 ≡ (A1A2)
kA1, X1 ≡ A2A1B0. Since X−AB ≡

UX1 for some U and X−ABZ is reduced, X1Z ≡ A2A1B0A
−
2 A
−
1 B
−
0 is a re-

duced word. By the assumption a reduced word of Y −A2A1B0A
−
2 A
−
1 B
−
0 Y

is cyclically reduced and A2A1B0A
−
2 A
−
1 B
−
0 Y is reduced, hence X1Z ≡

A2A1B0A
−
2 A
−
1 B
−
0 is cyclically reduced and the reduced word of Y −A2A1B0A

−
2 A
−
1 B
−
0 Y

is given by a cyclical transformation of A2A1B0A
−
2 A
−
1 B
−
0 . Hence Y ≡

(A2A1B0A
−
2 A
−
1 B
−
0 )kY0 where k ≥ 0 and A2A1B0A

−
2 A
−
1 B
−
0 ≡ Y0Y1 for some

Y1.
For instance the reduced word of Y −A2A1B0A

−
2 A
−
1 B
−
0 Y is of the form

B0A
−
2 A
−
1 B
−
0 A2A1 orB2A

−
2 A
−
1 B
−
2 B
−
1 A2A1B1 whereB0 ≡ B1B2. By Lemma 3.5

(4) or (3) respectively we conclude A1, A2, B0 ∈ Fm or A1, A2, B1, B2 ∈ Fm
which implies Y −ABY,X−A−B−X ∈ Fm. �

4. Proof of Theorem 1.1

Lemma 4.1. For every grope group GS the following hold:
If e 6= [u, v] ∈ Fm and at least one of u and v does not belong to Fm, then

[u, v] is conjugate to cs or c−s in Fm for some s such that lh(s) = m and s
is binary branched.

Proof. We have n > m such that u, v ∈ Fn. It suffices to show the lemma in
case that the reduced word for [u, v] is cyclically reduced. For, suppose that
we have the conclusion of the lemma in the indicated case. Let [u, v] ∈ Fm
and [u, v] = XYX− where XYX− is a reduced word and Y is cyclically
reduced. Then we have [X−uX,X−vX] = X−[u, v]X = Y . On the other
hand X,Y ∈ Fm by Lemma 2.11. By the assumption at least one of X−uX
and X−vX does not belong to Fm. Since [u, v] is conjugate to Y in Fm, we
have the conclusion.

Let u, v ∈ Fn such that [u, v] 6= e and the reduced word for [u, v] is
cyclically reduced. There exist a cyclically reduced non-empty word V0 ∈
W(En) and a reduced word X ∈ W(En) such that v = X−V0X and the
word X−V0X is reduced. Let U0 be a reduced word for uX−. Since V0
is a cyclically reduced word, at least one of U0V0 and V0U

−
0 is reduced.

When U0V0 is reduced, there exist k ≥ 0 and reduced words Y,A,B such
that U0 ≡ Y −AV k

0 , V0 ≡ BA, and Y −ABY is reduced. When, however,
V0U

−
0 is reduced, there exist k ≥ 0 and reduced words Y,A,B such that

U0 ≡ Y −A(V −0 )k, V0 ≡ BA, and Y −ABY is reduced. In both bases uvu−1 =
Y −ABY and v = X−BAX. Note that AB and BA are cyclically reduced.

We analyze the reduction procedure of Y −ABYX−A−B−X in the three
cases.
(Case 0): X and Y are empty.
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In this case both A and B are non-empty and we can use Lemma 3.1.
Using (1.1) and (1.2) alternately and (1.3) possibly as the last step we ob-
tain the reduced word A0ZB0A

−
0 Z
−B−0 of ABA−B−. Now there are two

possibilities: If one of A0, Z,B0 is not small, by (1) and (2) of Lemma 3.5
A0, B0, Z ∈ Fm; by applying Lemma 3.1 repeatedly we get A,B ∈ Fm. If,
however, A0, B0, Z are not small, by Lemma 2.14 one of A0, B0, Z is empty
and [u, v] = cs or [u, v] = c−s for some binary branched s with lh(s) = m .
(Case 1): Exactly of X and Y is empty.

Since the arguments are symmetric, we only deal with the case Y is
empty and X is not empty. Therefore at least one of A and B is non-
empty. As before we use Lemmas 3.2, 3.3, 3.4 to get the reduced word
A0UV A

−
0 CU

−V −C− of ABX−A−B−X. Depending on the possibility that
some of the above words are empty we apply one of (2), (3) or (4) of
Lemma 3.5 to get A, U , V , C ∈ Fm. By applying Lemmas 3.2, 3.3, 3.4
repeatedly we get A,B ∈ Fm, which implies u, v ∈ Fm, or [u, v] = cs etc. as
in (Case 0).
(Case 2): Both X and Y are non-empty.

This follows directly from Lemma 3.7. Only in this case we use the as-
sumption that the reduced word of Y −ABYX−A−B−X is cyclically re-
duced. �

Lemma 4.2. Let F be the free group generated by the set B and a, b ∈ B be
distinct elements. If [a, b] = [u, v] for u, v ∈ F , then neither u nor v belongs
to the commutator subgroup of F .

Proof. Since a, b are generators, [a, b] /∈ [F, [F, F ]] (Theorem 11.2.4,[7]) and
the conclusion follows. �

Lemma 4.3. Let F be the free group generated by the set B and a, b ∈ B be
distinct. If c, d ∈ {β, β− : β ∈ B} and [a, b] = [x−1cx, y−1dy] for x, y ∈ F ,
then c, d ∈ {a, a−, b, b−} and moreover c ∈ {a, a−} iff d ∈ {b, b−}, and
c ∈ {b, b−} iff d ∈ {a, a−}.
Proof. Using the canonical projection to the subgroup 〈a, b〉 we see that
c, d ∈ {a, a−, b, b−}. To see the remaining part it suffices to show that if
c = a, and d = a or a−, then [a, b] 6= [x−1cx, y−1dy] for any x, y.

We show that aba−b− is not cyclically equivalent to the reduced word of
[x−1cx, y−1dy]. For this purpose we may assume x = e. We only deal with
d = a. We have a reduced word Y such that y−1ay = Y −aY and Y −aY
is reduced. (Note that y 6= Y is possible.) The head of Y is not a nor a−,
since Y −aY is reduced. When the tail of Y is a or a−, we choose n ≥ 0
so that Y ≡ Zan or Y ≡ Z(a−)n respectively and n is maximal. Then Z
is non-empty. Now aZ−aZa−Z−a−Z is a cyclically reduced word which is
cyclically equivalent to aY −aY a−Y −a−Y . Since aZ−aZa−Z−a−Z is not
cyclically equivalent to aba−b−, we have the conclusion. �

Proof of Theorem 1.1. Let h : GS0 → GS be a nontrivial homomorphism.
Let cs = cS0

s , dt = cSt , Fn = FSn , and En = ESn . Then there exists s∗ ∈ S0
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such that h(cs∗) is nontrivial (clearly for every finite sequence s starting
with s∗ also h(cs) is nontrivial).

We have n such that h(cs∗) ∈ Fn. Since Fn is free, Im(h) is not included in
Fn and hence there exists ς ∈ S0 starting with s∗ and such that h(cς) ∈ Fn,
but h(cς0) /∈ Fn or h(cς1) /∈ Fn. Then by Lemma 4.1 we have dτ ∈ En such
that h(cς) is conjugate to dτ or d−τ and τ is binary branched.

Moreover, Lemma 2.10 implies that neither h(cς0) nor h(cς1) belongs to
Fn. We show the following by induction on k ∈ N:

(1) For u ∈ Seq(2) with lh(u) = k

(a) h(cςu) is conjugate to dτv or d−τv in Fn+k and τv is binary branched
for some v ∈ Seq(2) with lh(v) = k;

(b) Neither h(cςu0) nor h(cςu1) belongs to Fn+k;

(2) For every v ∈ Seq(2) with lh(v) = k there exists u ∈ Seq(2) such that
lh(u) = k and h(cςu) is conjugate to dτv or d−τv in Fn+k.

We have shown that this holds when k = 0.
Suppose that (1) and (2) hold for k. Let lh(u) = k and h(cςu) =

[h(cςu0), h(cςu1)] is conjugate to dτv = [dτv0, dτv1] or d−τv = [dτv1, dτv0] in
Fn+k.

We claim h(cςu0) ∈ Fn+k+1. To show this by contradiction, suppose that
h(cςu0) /∈ Fn+k+1. Apply Lemma 4.1 to Fn+k+1, then we have [h(cςu0), h(cςu1)]
is conjugate to dt or d−t with lh(t) = n+ k+ 1 in Fn+k+1, which is impossi-
ble since [h(cςu0), h(cςu1)] ∈ [Fn+k+1, Fn+k+1]. Similarly we have h(cςu1) ∈
Fn+k+1.

On the other hand, neither h(cςu0) nor h(cςu1) belongs to [Fn+k+1, Fn+k+1]
by Lemma 4.2. Hence at least one of h(cςu00) and h(cςu01) does not belong
to Fn+k+1 and consequently neither h(cςu00) nor h(cςu01) belongs to Fn+k+1

by Lemma 2.10.
Hence h(cςu0) is conjugate to dt or d−t with lh(t) = n+k+1 by Lemma 4.1.

Similarly, h(cςu1) is conjugate to dt′ or d−t′ with lh(t′) = n + k + 1. Since
h(cςu) = [h(cςu0), h(cςu1)] is conjugate to dτv = [dτv0, dτv1] or d−τv = [dτv0, dτv1]
in Fn+k+1, h(cςu0) and h(cςu1) are conjugate to dτvj or d−τvj for some j ∈ 2

and for each j ∈ 2 the element dτvj is conjugate to exactly one of h(cςu0),
h(cςu1), h(cςu0)

− or h(cςu1)
− by Lemma 4.3. Hence (1) and (2) hold for

k + 1. Now we have shown the induction step and finished the proof. �

Remark 4.4. Though the conclusion of Theorem 1.1 is rather simple, em-
beddings from GS0 into GS may be complicated. In particular the group
of automorphisms of GS0 is uncountable. We explain this more precisely.
Observe that

[dc−d−, dcd−c−d−] = dc−d−dcd−c−d−dcd−dcdc−d− = cdc−d− = [c, d].

For T ⊆ S0 we define ϕT (cs0) = cs1c
−
s0c
−
s1 and ϕT (cs1) = cs1c

−
s1c
−
s0c
−
s1 for

s ∈ T and ϕT (cs0) = cs0 and ϕT (cs1) = cs1 for s /∈ T . Then we have
automorphisms ϕS 6= ϕT for distinct subsets S and T of S0. Hence we
have uncountable many automorphism on GS0. In particular this shows that
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there are uncountably many self-homotopy equivalences of the minimal grope
since for every one of the countably many attached 2-cells we have a choice
of more than one possibility to extend the self-homotopy equivalence.
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