MAPS FROM THE MINIMAL GROPE TO AN ARBITRARY GROPE

Matija Cencelj, Katsuya Eda and Aleš Vavpetič

Abstract

We consider open infinite gropes and prove that every continuous map from the minimal grope to another grope is nulhomotopic unless the other grope has a 'branch' which is a copy of the minimal grope. Since every grope is the classifying space of its fundamental group, the problem is translated to group theory and a suitable block cancellation of words is used to obtain the result.

Keywords: grope, perfect group (MSC 2010): 55R35, 20F12, 20F38

1. Introduction

Here we study (open infinite) gropes (a recent short note on gropes in general is [12]) and in particular we consider the question whether there exists a homotopically nontrivial map from the minimal grope to another grope.

Gropes are 2-dimensional CW complexes with infinitely many cells constructed in the following way. Start with a circle, attach a disk with handles onto the circle, onto each handle curve of the previous stage attach another disk with handles, etc. In the case of the minimal grope (also called the fundamental grope) always attach disks with only one handle.

Gropes were introduced by Štan'ko [11]. They have an important role in geometric topology ([3]; for more recent use in dimension theory see [5]

Supported in part by the Slovenian-Japanese research grant BI-JP/05-06/2, ARRS research program No. P1-0292-0101, the ARRS research project of Slovenia No. J1-9643-0101 and the Grant-in-Aid for Scientific research (C) of Japan No. 16540125.
and [4]). Their fundamental groups, which we call grope groups, were used by Berrick and Casacuberta to show that the plus-construction in algebraic K-theory is localization [2]. Recently [1] such a group has appear in the construction of a perfect group with a nonperfect localization.

Gropes are classifying spaces of their fundamental groups, so the question about the existence of homotopically nontrivial maps from the minimal grope to another grope is equivalent to the existence of nontrivial homomorphisms from the fundamental group of the minimal grope (which we call the minimal grope group) to the fundamental group of the other grope. Note that the fundamental group of the disk with one handle is the free group on two generators and that the boundary circle of this disk is homotopic to the commutator of the two free generators of the fundamental group. The disk with n-handles is homotopic to the one-point-union of n-disks with one handle and the boundary circle of the disk with n-handles is homotopic to the product of n commutators of the free generators of the fundamental group. Thus the fundamental group of a grope is the direct limit of free groups where the connecting homomorphisms make each generator into the product of commutators of new free generators.

In algebra these groups first appeared in the proof of a lemma by Heller [8] as follows. Let φ_{0} be a homomorphism from the free group F_{0} on one generator α to any perfect group P. Let

$$
\begin{equation*}
\varphi_{0}(\alpha)=\left[p_{0}, p_{1}\right]\left[p_{2}, p_{3}\right] \cdots\left[p_{2 n-2}, p_{2 n-1}\right] \in P \tag{*}
\end{equation*}
$$

Then we can extend φ_{0} to a homomorphism φ_{1} of a (nonabelian) free group F_{1} on $2 n$ generators $\beta_{0}, \ldots, \beta_{2 n-1}$ by setting $\varphi_{1}\left(\beta_{i}\right)=p_{i}$. Note that $\varphi_{0}(\alpha)$ may have several different expressions as a product of commutators, so we may choose any; even if some of the elements $p_{1}, \ldots, p_{2 n-1}$ coincide, we take distinct elements $\beta_{i}, i=1, \ldots, 2 n-1$ as the generators of F_{1}. Now we repeat the above construction for every homomorphism $\left.\varphi_{1}\right|_{\left\langle\beta_{i}\right\rangle}$ of the free group on one generator to P and thus obtain a homomorphism $\varphi_{2}: F_{2} \rightarrow P$. Repeating the above construction we obtain a direct system of inclusions of free groups $F_{1} \rightarrow F_{2} \rightarrow F_{3} \rightarrow \cdots$ and homomorphisms $\varphi_{n}: F_{n} \rightarrow P$. The direct limit of F_{n} is a locally free perfect group D and every group obtained by the above construction is called a grope group (and its classifying space is a grope). This construction shows therefore that every homomorphism from a free group on one generator to a perfect group P can be extended to a homomorphism from a grope group to P. Note that in case the perfect group P has the Ore property $([9],[6])$ that every element in P is a commutator, in the above process ($*$) we can choose every generator in the chosen basis of F_{n} to be a single commutator of two basis elements of F_{n+1}. The group obtained in this way is the minimal grope group M. The group M is generated by finite nonempty words w in the alphabet $\{0,1\}$ with relations $w=[w 0, w 1]$, other grope groups are more difficult to define in terms of a presentation, we give a definition in Section 2. Clearly every grope group admits many epimorphisms onto M.

The main result of this paper is that the minimal grope admits a homotopically nontrivial map to another grope only if the other grope has a 'branch' which is another copy of the minimal grope. This seems to be one of the very few results about the existence of maps between wild spaces. Additionally, we prove that there are uncountably many self-homotopy equivalences of the minimal grope group.

In group theoretic language the main result can be formulated as follows (supporting definitions will appear in the first part of Section 2).
Theorem 1.1. The minimal grope group $M=G^{S_{0}}$ admits a nontrivial homomorphism into a grope group G^{S}, if and only if there exists $s \in S$ such that a frame $\{t \in \operatorname{Seq}(\mathbb{N})$: st $\in S\}$ is equal to S_{0}.

This implies, in particulary, that there exist at least two non-isomorphic grope groups (and two gropes which are not homotopically equivalent).
Corollary 1.2. The minimal grope group $M=G^{S_{0}}$ admits a nontrivial homomorphism into a grope group G^{S}, if and only if G^{S} is isomorphic to the free product $M * K$ for a grope group K.

In Section 2 we give a systematic definition of grope groups (the combinatorics of which mimics the contruction of gropes) and prove some technical lemmas. In Section 4 we prove Theorem 1.1.

2. Systematic definition of grope groups and basic facts

For every positive integer n let $\underline{n}=\{0,1, \ldots, n-1\}$. The set of nonnegative integers is denoted by \mathbb{N}. We denote the set of finite sequences of elements of a set X by $\operatorname{Seq}(X)$ and the length of a sequence $s \in \operatorname{Seq}(X)$ by $l h(s)$. The empty sequence is denoted by \emptyset.

For a non-empty set A let $L(A)$ be the set $\left\{a, a^{-}: a \in A\right\}$, which we call the set of letters. We identify $\left(a^{-}\right)^{-}$with a. Let $\mathcal{W}(A)=\operatorname{Seq}(L(A))$, which we call the set of words. For a word $W \equiv a_{0} \cdots a_{n}$, define $W^{-} \equiv a_{n}^{-} \cdots a_{0}^{-}$. We write $W \equiv W^{\prime}$ for identity in $\mathcal{W}(A)$ while $W=W^{\prime}$ for identity in the free group generated by A. For instance $a a^{-}=\emptyset$ but $a a^{-} \not \equiv \emptyset$. We adopt $[a, b]=a b a^{-1} b^{-1}$ as the definition of the commutator. A subword U of a word W is a subsequence of W, i.e. $W \equiv X U Y$ for some words X and Y.

To describe all the grope groups we introduce some notation.
Definition 2.1. A grope frame S is a subset of $\operatorname{Seq}(\mathbb{N})$ satisfying:
(1) $\emptyset \in S$,
(2) for every $s \in S$ there exists $n>0$ such that $\underline{2 n}=\{i \in \mathbb{N}:$ si $\in S\}$,
(3) if the concatenation st $\in S$, for $s, t \in \operatorname{Seq}(\mathbb{N})$, then also $s \in S$.

In some situations it may be useful to denote the last element in (2) of the above definition by $\varepsilon(s)=2 n-1$ where $\underline{2 n}=\{i \in \mathbb{N}: s i \in S\}$. If there is no ambiguity we write $\varepsilon=\varepsilon(s)$.

For each grope frame S we induce formal symbols c_{s}^{S} for $s \in S$ and define $E_{m}^{S}=\left\{c_{s}^{S}: \operatorname{lh}(s)=m, s \in S\right\}$ and a free group $F_{m}^{S}=\left\langle E_{m}^{S}\right\rangle$. Then
define $e_{m}^{S}: F_{m}^{S} \rightarrow F_{m+1}^{S}$ by $e_{m}^{S}\left(c_{s}^{S}\right)=\left[c_{s 0}^{S}, c_{s 1}^{S}\right] \cdots\left[c_{s \varepsilon(s)-1}^{S}, c_{s \varepsilon(s)}^{S}\right]$. Let $G^{S}=$ $\xrightarrow{\lim }\left(F_{m}^{S}, e_{m}^{S}: m \in \mathbb{N}\right)$ and $e_{m, n}^{S}=e_{n-1}^{S} \cdots e_{m}^{S}$ for $m \leq n$ and every such group $\overrightarrow{G^{S}}$ is a grope group.

For $s \in S, s$ is binary branched, if $\{i \in \mathbb{N}: s i \in S\}=$ 2, i.e. $\varepsilon(s)=1$. Let S_{0} be the grope frame such that every $s \in S_{0}$ is binary branched, i.e. $S_{0}=\operatorname{Seq}(\underline{2})$. Then $G^{S_{0}}=M$ is the so-called minimal grope group. Since e_{m}^{S} is injective, we frequently regard F_{m}^{S} as a subgroup of G^{S} (and similarly F_{m} as a subgroup of F_{n} for $m<n$).

For a non-empty word W the head of W is the left most letter b of W, i.e. $W \equiv b X$ for some word X, and the tail of W is the right most letter c of W, i.e. $W \equiv Y c$ for some word Y. When $A B \equiv W$, we say that A is the head part of W and B is the tail part of W. Our arguments mostly concern word theoretic arguments and we refer the reader to [7] or [10] for basic notions of words.

For a word $W \in \mathcal{W}\left(E_{m}^{S}\right)$ and $n \geq m$, we let $e_{m, n}^{S}[W]$ be a word in $\mathcal{W}\left(E_{n}^{S}\right)$ defined as follows: $e_{m, m}^{S}[W] \equiv W$ and $e_{m, n+1}^{S}[W]$ is obtained by replacing every c_{t} in $e_{m, n}^{S}[W]$ by

$$
\begin{equation*}
c_{t 0}^{S} C_{t 1}^{S}\left(c_{t 0}^{S}\right)^{-}\left(c_{t 1}^{S}\right)^{-} \cdots c_{t \varepsilon-1}^{S} c_{t \varepsilon}^{S}\left(c_{t \varepsilon-1}^{S}\right)^{-}\left(c_{t \varepsilon}^{S}\right)^{-} \tag{P0}
\end{equation*}
$$

and every $\left(c_{t}^{S}\right)^{-}$by

$$
\text { (P1) } \quad c_{t \varepsilon}^{S} c_{t \varepsilon-1}^{S}\left(c_{t \varepsilon}^{S}\right)^{-}\left(c_{t \varepsilon-1}^{S}\right)^{-} \cdots c_{t 1}^{S} c_{t 0}^{S}\left(c_{t 1}^{S}\right)^{-}\left(c_{t 0}^{S}\right)^{-}
$$

respectively.
We drop the superscript ${ }^{S}$, if no confusion can occur.
Observation 2.2. Let $n>m+1$ and let $W \equiv e_{m+1, n}\left[c_{s 0}\right]$. Suppose that $X \in \mathcal{W}\left(E_{n}\right)$ is a reduced word and $X \in F_{m}$. When W is a subword of X, W may appear in

$$
\text { (C0) } \quad e_{m, n}\left[c_{s}\right]=e_{m+1, n}\left[c_{s 0} c_{s 1} c_{s 0}^{-} c_{s 1}^{-} \cdots c_{s \varepsilon-1} c_{s \varepsilon} c_{s \varepsilon-1}^{-} c_{s \varepsilon}^{-}\right]
$$

or

$$
\text { (C1) } e_{m, n}\left[c_{s}^{-}\right]=e_{m+1, n}\left[c_{s \varepsilon} c_{s \varepsilon-1} c_{s \varepsilon}^{-} c_{s \varepsilon-1}^{-} \cdots c_{s 1} c_{s 0} c_{s 1}^{-} c_{s 0}^{-}\right] \text {. }
$$

The successive letter to W in (C0) is $\operatorname{head}\left(e_{m+1, n}\left[c_{s 1}\right]\right)=c_{s 10 \ldots 0}$, but in (C1) it is $\operatorname{head}\left(e_{m+1, n}\left[c_{s 1}^{-}\right]\right)=\operatorname{head}\left(e_{m+2, n}\left[c_{s 1 \varepsilon(s 1)]}\right]\right)=c_{s 1 \varepsilon(s 1) 0 \ldots 0}$. Thus the successive letter to W in X is not uniquely determined. However, if $X \equiv W Y$ for some Y, the case (C1) can not appear, so the head of Y is uniquely determined as $c_{s 10 \cdots 0}$.

Similarly, the preceding letter to W is not uniquely determined - there are four possibilities:

- tail $\left(e_{m+1, n}\left[c_{s 1}\right]\right)=\operatorname{tail}\left(e_{m+2, n}\left[c_{s 1 \varepsilon(s 1)}^{-}\right]\right)=\operatorname{tail}\left(e_{m+3, n}\left[c_{s 1 \varepsilon(s 1) 0}^{-}\right]\right)=$ $c_{s 1 \varepsilon(s 1) 0 \ldots 0}^{-}$in case (C1).
- If $X \equiv W Y$ for some Y, there is no preceding letter to W.
- tail $\left(e_{m, n}\left[c_{t}\right]\right)=\operatorname{tail}\left(e_{m+1, n}\left[c_{t \varepsilon}^{-}\right]\right)=\operatorname{tail}\left(e_{m+2, n}\left[c_{t \varepsilon 0}^{-}\right]\right)=c_{t \varepsilon 0 \ldots 0}^{-}$in case (C1) if $X=e_{m+1, n}\left[Z c_{t} c_{s} Y\right]$ for some Z, Y.
- tail $\left(e_{m, n}\left[c_{t}^{-}\right]\right)=\operatorname{tail}\left(e_{m+1, n}\left[c_{t 0}^{-}\right]\right)=c_{t 0 \ldots 0}^{-}$in case $(C 1)$ if $X=e_{m+1, n}\left[Z c_{t}^{-} c_{s} Y\right]$ for some Z, Y.
However, the preceding letter to W determines the succesive letter to W uniquely:
- If the preceding letter to W is $c_{s 1 \varepsilon(s 1) 0 \ldots 0}^{-}$then we are in (C1).
- In all other cases we are in (CO).

Observation 2.3. A letter $c_{s 0 \cdots 0} \in \mathcal{W}\left(E_{n}\right)$ for $l h(s)=m$ possibly appears in $e_{m, n}\left[W_{0}\right]$ in the following cases. When $n=m+1, c_{s 0}$ appears once in $e_{m, n}\left[c_{s}\right]$ and also once in $e_{m, n}\left[c_{s}^{-}\right]$. According to the increase of $n, c_{s 0 \cdots 0}$ appears in many parts. $c_{s 0 \cdots 0}$ appears 2^{n-m-1}-times in $e_{m, n}\left[c_{s}\right]$ and also 2^{n-m-1}-times in $e_{m, n}\left[c_{s}^{-}\right]$.

The following lemma is easy to verify.
Lemma 2.4. For a word $W \in \mathcal{W}\left(E_{m}\right)$ and $n \geq m, e_{m, n}[W]$ is reduced, if and only if W is reduced.

Lemma 2.5. For a reduced word $V \in \mathcal{W}\left(E_{n}\right)$ and $n \geq m, V \in F_{m}$ if and only if there exists $W \in \mathcal{W}\left(E_{m}\right)$ such that $e_{m, n}[W] \equiv V$.

Proof. The sufficiency is obvious. To see the other direction, let W be a reduced word in $\mathcal{W}\left(E_{m}\right)$ such that $e_{m, n}[W]=V$ in F_{n}. By Lemma 2.4 $e_{m, n}[W]$ is reduced. Since every element in F_{n} has a unique reduced word in $\mathcal{W}\left(E_{n}\right)$ presenting itself, we have $e_{m, n}[W] \equiv V$.

In the case of the minimal grope group we have

$$
\begin{aligned}
e_{0,2}\left[c_{\emptyset}\right] & =c_{00} c_{01} c_{00}^{-} c_{01}^{-} c_{10} c_{11} c_{10}^{-} c_{11}^{-} c_{01} c_{00} c_{01}^{-} c_{00}^{-} c_{11} c_{10} c_{11}^{-} c_{10}^{-} \\
e_{0,2}\left[c_{\emptyset}^{-}\right] & =c_{10} c_{11} c_{10}^{-} c_{11}^{-} c_{00} c_{01} c_{00}^{-} c_{01}^{-} c_{11} c_{10} c_{11}^{-} c_{10}^{-} c_{01} c_{00} c_{01}^{-} c_{00}^{-}
\end{aligned}
$$

We see that the subword $c_{00} c_{01}$ (and similarly every subword of any $e_{01}\left[c_{s}^{ \pm}\right]$) appears in $e_{0,2}\left[c_{\emptyset}\right]$ and in $e_{0,2}\left[c_{\emptyset}^{-}\right]$. On the other hand the subword $c_{01}^{-} c_{10}$ (and similarly every subword of $e_{02}\left[c_{\emptyset}\right]$ which is not a subword of $e_{01}\left[c_{s}^{ \pm}\right]$) does not appears in $e_{0,2}\left[c_{\emptyset}^{-}\right]$. We generalise this observation as follows.

Observation 2.6. Let us show that if a subword W of $e_{m, n}[d]$ for some $d=c_{s}^{ \pm}$is not a subword of $e_{m+1, n}\left[c_{s k}\right]$ or $e_{m+1, n}\left[c_{s k}^{-}\right]$, then the word W determines the letter d to be either c_{s} or c_{s}^{-}:

In this case $W \equiv W_{0} W_{1} W_{2}$, where W_{0} might be empty while for $i=1,2$ the subword W_{i} is nonempty and is the maximal subword of W which is contained in $e_{m+1, n}\left[c_{s k_{i}}^{\sigma_{i}}\right]$ for some $\sigma_{i}= \pm$ and some $k_{i} \in\{0, \ldots, \varepsilon(s)\}$. We have the following four possibilities.
(1) $\sigma_{1}=\sigma_{2}=+$: If $k_{2}=k_{1}+1$, then k_{1} is even and $d=c_{s}$. If, however, $k_{2}=k_{1}-1$, then k_{1} is odd and $d=c_{s}^{-}$.
(2) $\sigma_{1}=+$ and $\sigma_{2}=-$: If $k_{2}=k_{1}-1$, then k_{1} is odd and $d=c_{s}$. If, however, $k_{2}=k_{1}+1$, then k_{1} is even and $d=c_{s}^{-}$.
(3) $\sigma_{1}=-$ and $\sigma_{2}=+$: If $k_{2}=k_{1}+1$, then k_{1} is odd and $d=c_{s}$. If, however, $k_{2}=k_{1}-1$, then k_{1} is even and $d=c_{s}^{-}$.
(4) $\sigma_{1}=\sigma_{2}=-$: If $k_{2}=k_{1}+1$, then k_{1} is even and $d=c_{s}$. If, however, $k_{2}=k_{1}-1$, then k_{1} is odd and $d=c_{s}^{-}$.
Hence the word W determines the letter d uniquely.
Motivated by this observation we state the following technical definition.
Definition 2.7. Let $W_{0} \in \mathcal{W}\left(E_{m}\right)$ and $n>m$. A subword $V \in \mathcal{W}\left(E_{n}\right)$ of $e_{m, n}\left[W_{0}\right]$ is small, if there exists a letter c_{s} or c_{s}^{-}in W_{0} and $i \in \mathbb{N}$ such that V is a subword of either $e_{m+1, n}\left[c_{s i}\right]$ or $e_{m+1, n}\left[c_{s i}^{-}\right]$.

In particular, the word W in Observation 2.6 is not small. Note that being small depends on m. In the following usage of this notion m and n are always fixed in advance.

Note that a letter $c_{s 0 \cdots 0} \in \mathcal{W}\left(E_{n}\right)$ for $l h(s)=m$ possibly appears in $e_{m, n}\left[W_{0}\right]$ in the following cases. When $n=m+1, c_{s 0}$ appears once in $e_{m, n}\left[c_{s}\right]$ and also once in $e_{m, n}\left[c_{s}^{-}\right]$. According to the increase of $n, c_{s 0 \cdots 0}$ appears in many parts. $c_{s 0 \cdots 0}$ appears 2^{n-m-1}-times in $e_{m, n}\left[c_{s}\right]$ and also 2^{n-m-1}-times in $e_{m, n}\left[c_{s}^{-}\right]$. This is a particular case where a subword is small.

For an arbitrary reduced word $W \in \mathcal{W}\left(E_{n}\right)$ small subwords in $\mathcal{W}\left(E_{n}\right)$ are not defined. However, according to Lemma 2.5, if also $W \in F_{m}, m<n$, a subword of $W \in \mathcal{W}\left(E_{n}\right)$ is small considering $W \equiv e_{m, n}\left[W_{0}\right]$ for a word $W_{0} \in \mathcal{W}\left(E_{m}\right)$.

Lemma 2.8. Let $m<n$ and A be a non-empty word in $\mathcal{W}\left(E_{n}\right)$. Let $X_{0} A Y_{0}$ and $X_{1} A Y_{1}$ be reduced words in $\mathcal{W}\left(E_{n}\right)$ satisfying $X_{0} A Y_{0}, X_{1} A Y_{1} \in F_{m}$.
(1) If A is not small, $X_{0} A \notin F_{m}$ and $X_{1} A \notin F_{m}$, then head $\left(Y_{0}\right)=$ head $\left(Y_{1}\right)$.
(2) Let X_{0} be an empty word. If A is not small and $A \notin F_{m}$, then $\operatorname{head}\left(Y_{0}\right)=\operatorname{head}\left(Y_{1}\right)$.
(3) Let X_{0} and X_{1} be empty words. If $A \notin F_{m}$, then $\operatorname{head}\left(Y_{0}\right)=$ head $\left(Y_{1}\right)$.

Proof. (1) Since $X_{0} A Y_{0} \in F_{m}$ but $X_{0} A \notin F_{m}$, we have a letter $c \in E_{m} \cup E_{m}^{-}$ and words U_{0}, U_{1}, U_{2} such that $U_{1} \not \equiv \emptyset, U_{2} \not \equiv \emptyset, X_{0} A \equiv U_{0} U_{1}$ and $U_{1} U_{2} \equiv$ $e_{m, n}[c]$. Since A is not small, c and U_{0}, U_{1}, U_{2} are uniquely determined by A. Since the same thing holds for $X_{1} A Y_{1}$, we have the conclusion by Observation 2.2 for $n>m+1$. (The case for $n=m+1$ is easier.)
(2) Since $A Y_{0} \in F_{m}, A \notin F_{m}$ and A is not a small word, for any word B such that $B A$ is reduced we have $B A \notin F_{m}$. In particular $X_{1} A \notin F_{m}$ and the conclusion follows from (1).
(3) Since $A Y_{0} \in F_{m}$, there are A_{0} and non-empty U_{0}, U_{1} such that $A_{0} \in$ $F_{m}, A \equiv A_{0} U_{0}$ and $U_{0} U_{1} \equiv e_{m, n}[c]$ for some $c \in E_{m} \cup E_{m}^{-}$. Since $A \notin F_{m}$, the head of U_{1} is uniquely determined by A and hence the heads of Y_{0} and Y_{1} are the same (Observation 2.2).

Lemma 2.9. Let $m<n$ and $A, X, Y \in \mathcal{W}\left(E_{n}\right)$ and $A X A^{-} Y \in F_{m}$. If $A X A^{-} Y$ is reduced and A is not small, then $A X A^{-} \in F_{m}$ and $Y \in F_{m}$.

Proof. The head of the reduced word in $\mathcal{W}\left(E_{m}\right)$ for the element $A X A^{-} Y$ is c_{s} or c_{s}^{-}for $c_{s} \in E_{m}$. According to c_{s} or $c_{s}^{-}, A \equiv e_{m+1, n}\left[c_{s 0}\right] Z$ or $e_{m+1, n}\left[c_{s k}\right] Z$ for a non-empty word Z, where $\underline{k+1}=\{i \in \mathbb{N}$: si $\in S\}$ is even. Then $A^{-} \equiv Z^{-} e_{m+1, n}\left[c_{s 0}^{-}\right]$or $A^{-} \equiv Z^{-} e_{m+1, n}\left[c_{s k}^{-}\right]$and hence $A X A^{-} \in$ F_{m} and consequently $Y \in F_{m}$.
Lemma 2.10. For $e \neq x \in F_{m}^{S}$ and $u \in G^{S}$, uxu $u^{-1} \in F_{m}^{S}$ implies $u \in F_{m}^{S}$.
Proof. There exists $n \geq m$ such that $u \in F_{n}$. Let W be a cyclically reduced word and V be a reduced word such that $x=V W V^{-}$in F_{m} and $V W V^{-}$is reduced. Then $e_{m, n}(x)=e_{m, n}[V] e_{m, n}[W] e_{m, n}[V]^{-}$and $e_{m, n}[V]$ is reduced and $e_{m, n}[W]$ is cyclically reduced by Lemma 2.4. Let U be a reduced word for u in F_{n}. Let $k=\operatorname{lh}(U)$. Then $e_{m, n}\left(x^{2 k+1}\right)=e_{m, n}[V] e_{m, n}[W]^{2 k+1} e_{m, n}[V]^{-}$ and the right hand term is a reduced word. Hence the reduced word for $u x^{k} u^{-}$of the form $X e_{m, n}[W] Y$, where $U e_{m, n}[V] e_{m, n}[W]^{k}=X$ and $e_{m, n}[W]^{k} e_{m, n}[V]^{-} U^{-}=Y$. Since $u x^{k} u^{-1} \in F_{m}, X \in F_{m}$ and $Y \in F_{m}$. Now we have $U e_{m, n}[V] \in e_{m, n}\left(F_{m}\right)$ and hence $U \in e_{m, n}\left(F_{m}\right)$, which implies the conclusion.

Lemma 2.11. Let $U W U^{-}$be a reduced word in $\mathcal{W}\left(E_{n}\right)$. If $U W U^{-} \in F_{m}$ and W is cyclically reduced, then $U, W \in F_{m}$.

Proof. If U is empty or $n=m$, then the conclusion is obvious. If $U \in F_{m}$, then $W U^{-} \in F_{m}$ and so $W \in F_{m}$. Suppose that U is $U \notin F_{m}$. Since $U W U^{-}, U W^{-} U^{-} \in F_{m}$, the head of W and that of W^{-}is the same by Lemma 2.8 (3), which contradicts that W is cyclically reduced.

Lemma 2.12. Let $X Y$ and $Y X$ be reduced words in $\mathcal{W}\left(E_{n}\right)$ for $n \geq m$. If $X Y$ and $Y X$ belong to F_{m}, then both of X and Y belong to F_{m}.

Proof. We may assume $n>m$. When $n>m$, the head of $e_{m, n}[W]$ for a non-empty word $W \in \mathcal{W}\left(E_{m}\right)$ is $c_{s 0 \cdots 0}$ or $c_{s k 0 \cdots 0}$ where $l h(s)=m$ and $k+1=\{i \in \mathbb{N}: s i \in S\}$ is even. (When $n=m+1$, there appears no $0 \cdots 0$.) Since $X^{-} Y^{-} \in F_{m}$ and $X^{-} Y^{-}$is reduced, the tail of X is of the form $c_{s 0 \cdots 0}^{-}$ or $c_{s k 0 \cdots 0}^{-}$. We only deal with the former case. Suppose that $X \notin F_{m}$. Since $X Y \in F_{m}$ and $X Y$ is reduced, $X \equiv Z e_{m+1, n}\left[c_{s 1} c_{s 0}^{-}\right]$for some Z. This implies $X^{-} \equiv e_{m+1, n}\left[c_{s 0} c_{s 1}^{-}\right] Z^{-}$, which contradicts that $X^{-} Y^{-} \in F_{m}$ and $X^{-} Y^{-}$is reduced. Now we have $X, Y \in F_{m}$.

Lemma 2.13. Let $m<n$ and $A, B, C \in \mathcal{W}\left(E_{n}\right)$ such that $A B C A^{-} B^{-} C^{-} \in$ F_{m} and is nontrivial. If $A B C A^{-} B^{-} C^{-}$is a reduced word and at least one of A, B, C is not small, then $A, B, C \in F_{m}$.

Proof. Since $A B C A^{-} B^{-} C^{-} \neq e$, at most one of A, B, C is empty. When C is empty, the conclusion follows from Lemma 2.9 and the fact that $B A B^{-} A^{-}$ is also reduced and $B A B^{-} A^{-} \in F_{m}$.

Now we assume that A, B, C are non-empty. If A is not small, then $A B C A^{-} \in F_{m}$ and $B^{-} C^{-} \in F_{m}$ by Lemma 2.9. Since $B C$ is cyclically reduced, $A \in F_{m}$ and $B C \in F_{m}$ by Lemma 2.11. The conclusion follows from Lemma 2.12. In the case that C is not small, the argument is similar. The remaining case is when A and C are small. Then $A B C A^{-} B^{-} C^{-} \in F_{m}$ and $C B A C^{-} B^{-} A^{-} \in F_{m}$ imply $A \equiv C$, which contradicts the assumption that $A B C A^{-} B^{-} C^{-}$is reduced.
Lemma 2.14. Let $m<n$ and $A, B, C \in \mathcal{W}\left(E_{n}\right)$ such that $A B C A^{-} B^{-} C^{-} \in$ F_{m} and is nontrivial. If $A B C A^{-} B^{-} C^{-}$is a reduced word and A, B, C are small, then one of A, B, C is empty.

Assume C is empty. Then there exists $c_{s} \in E_{m}$ such that s is binary branched and either

$$
A \equiv e_{m+1, n}\left[c_{s 0}\right] \text { and } B \equiv e_{m+1, n}\left[c_{s 1}\right],
$$

or

$$
A \equiv e_{m+1, n}\left[c_{s 1}\right] \text { and } B \equiv e_{m+1, n}\left[c_{s 0}\right] .
$$

Proof. Since A, B, C are small, all the words A, B, C and their inverses must be subwords of $e_{m+1, n}\left[c_{s i}\right], i=0,1$, or $e_{m+1, n}\left[c_{s i}^{-}\right]$, for an element $c_{s} \in E_{m}$, and in particular that either

$$
A B C A^{-} B^{-} C^{-}=e_{m, n}\left(c_{s}\right)=e_{m+1, n}\left[c_{s 0} c_{s 1} c_{s 0}^{-} c_{s 1}^{-}\right]
$$

or

$$
A B C A^{-} B^{-} C^{-}=e_{m, n}\left(c_{s}^{-}\right)=e_{m+1, n}\left[c_{s 1} c_{s 0} c_{s 1}^{-} c_{s 0}^{-}\right],
$$

where the left most and right most terms are reduced words. Note that if the cardinality of $\{i \in \mathbb{N}$: si $\in S\}$ were greater than 2 , one of A, B, C would not be small; hence in our case s is binary branched. We only deal with the first case. Then $A B C \equiv e_{m+1, n}\left[c_{s 0} c_{s 1}\right]$ and $A^{-} B^{-} C^{-} \equiv e_{m+1, n}\left[c_{s 0}^{-} c_{s 1}^{-}\right]$. In case A, B, C are non-empty, A is a proper subword of $e_{m+1, n}\left[c_{s 0}\right]$ or C is a proper subword of $e_{m+1, n}\left[c_{s 1}\right]$. In either case $A^{-} B^{-} C^{-} \equiv e_{m+1, n}\left[c_{s 0}^{-} c_{s 1}^{-}\right]$ does not hold. Hence one of A, B, C is empty. We may assume C is empty. Since A, B are small, $A \equiv e_{m+1, n}\left[c_{s 0}\right]$ and $B \equiv e_{m+1, n}\left[c_{s 1}\right]$.

3. Block reduction

In this section we develop the method which we use to prove Theorem 1.1. Using letter reduction Wicks [13] showed that every commutator in an arbitrary free group is cyclicaly equivalent to a word of the form $A B C A^{-} B^{-} C^{-}$. We generalise his appoach in order to keep track of words in F_{n} which belong also in $F_{m}, m<n$. In particular, reducing words by certain blocks of letters we show that for words $A, B, X, Y \in \mathcal{W}\left(E_{n}\right)$ such that the reduced word of $Y^{-} A B Y X^{-} A^{-} B^{-} X$ is cyclicaly reduced and is an element of F_{m}, then either both elements $Y^{-} A B Y$ and $X^{-} A^{-} B^{-} X$ are in F_{m} or the entire word is a generator c_{s} of F_{m} or its inverse c_{s}^{-}.

Lemmas 3.1, 3.2, 3.3 and 3.4 show connections between our reduction steps in case at least one of X and Y is empty. Based on the results of the
previous section, these lemmas can be proved fairly easily, but they show what the block-wise reductions are. Lemma 3.5 corresponds to the final step, i.e. when we have the reduced word. Lemmas 3.6 and 3.7 correspond to the case that X and Y are non-empty. In lemmas of this section we assume $m<n$.

Lemma 3.1. Let $A, B \in \mathcal{W}\left(E_{n}\right)$ be non-empty reduced words such that $A B A^{-} B^{-} \neq e$ and $A B, A^{-} B^{-}$are reduced words. Then the following hold:
(1.1) If $B \equiv B_{0} A$, then B_{0} is non-empty, $A B_{0}, A^{-} B_{0}^{-}$are reduced words and the identity $A B_{0} A^{-} B_{0}^{-}=A B A^{-} B^{-}$holds. In addition if $A B_{0}$, $A^{-} B_{0}^{-} \in F_{m}$, then $A B, A^{-} B^{-} \in F_{m}$.
(1.2) If $A \equiv A_{0} B$, then A_{0} is non-empty, $A_{0} B$, $A_{0}^{-} B^{-}$are reduced words and the identity $A_{0} B A_{0}^{-} B^{-}=A B A^{-} B^{-}$holds. In addition if $A_{0} B$, $A_{0}^{-} B^{-} \in F_{m}$, then $A B, A^{-} B^{-} \in F_{m}$.
(1.3) If $A \equiv A_{0} Z$ and $B \equiv B_{0} Z$ for non-empty words A_{0}, B_{0} such that $B_{0} A_{0}^{-}$is reduced, then $A_{0} Z B_{0} A_{0}^{-} Z^{-} B_{0}^{-}$is reduced and the identity $A_{0} Z B_{0} A_{0}^{-} Z^{-} B_{0}^{-}=A B A^{-} B^{-}$holds. In addition if $A_{0}, B_{0}, Z \in F_{m}$, then $A B, A^{-} B^{-} \in F_{m}$.

Proof. We only show (1.1). The non-emptiness of the word B_{0} follows from $A B A^{-} B^{-} \neq e$. Since $A B$ and $A^{-} B^{-}$are reduced, $A B_{0}$ and $A^{-} B_{0}^{-}$are cyclically reduced and hence the second statement follows from Lemma 2.12.

Lemma 3.2. Let $A, B, C \in \mathcal{W}\left(E_{n}\right)$ be reduced words (possibly empty) such that $A B C A^{-} B^{-} C^{-} \neq e$ and $A B, C A^{-} B^{-} C^{-}$are reduced words. Then the following hold:
(2.1) If $B \equiv B_{0} C^{-}$, then $A B_{0}, A^{-} C B_{0}^{-} C^{-}$are reduced words and the identity $A B_{0} A^{-} C B_{0}^{-} C^{-}=A B C A^{-} B^{-} C^{-}$holds. In addition if $A B_{0} A^{-}, C B_{0}^{-} C^{-} \in F_{m}$, then $A B, C A^{-} B^{-} C^{-} \in F_{m}$.
(2.2) If $C \equiv B^{-} C_{0}$, then $A C_{0}, A^{-} B^{-} C_{0}^{-} B$ are reduced words and the identity $A C_{0} A^{-} B^{-} C_{0}^{-} B=A B C A^{-} B^{-} C^{-}$holds. In addition if $A C_{0} A^{-}, B^{-} C_{0}^{-} B \in F_{m}$, then $A B, C A^{-} B^{-} C^{-} \in F_{m}$.
(2.3) If $B \equiv B_{0} Z^{-}$and $C \equiv Z C_{0}$ for non-empty words B_{0}, C_{0} and $B_{0} C_{0}$ is reduced, then $A B_{0} C_{0} A^{-} Z B_{0}^{-} C_{0}^{-} Z^{-}$is reduced and the identity $A B_{0} C_{0} A^{-} Z B_{0}^{-} C_{0}^{-} Z^{-}=A B C A^{-} B^{-} C^{-}$holds. In addition if $A B_{0} C_{0} A^{-}, Z B_{0}^{-} C_{0}^{-} Z^{-} \in F_{m}$, then $A B, C A^{-} B^{-} C^{-} \in F_{m}$.

Proof. (2.1) The first proposition is obvious. Let $B_{0} \equiv X B_{1} X^{-}$for a cyclically reduced word B_{1}. Since $(A X) B_{1}(A X)^{-},(C X) B_{1}^{-}(C X)^{-} \in F_{m}$, $A X, C X, B_{1} \in F_{m}$ by Lemma 2.11. Now $A B=(A X) B_{1}(C X)^{-} \in F_{m}$ and $C A^{-} B^{-} C^{-}=(C X)(A X)^{-}\left(C B_{0}^{-} C^{-}\right) \in F_{m}$. We see (2.2) similarly.

For (2.3) observe the following. Since both B_{0} and C_{0} are non-empty, $B_{0} C_{0}$ and $B_{0}^{-} C_{0}^{-}$are cyclically reduced. Hence, using Lemmas 2.11 and 2.12, we have (2.3).

The next two lemmas are stated so that they can be directly applied by pattern matching for the reduction steps and so the statements contain trivial parts.

Lemma 3.3. Let $A, B, C \in \mathcal{W}\left(E_{n}\right)$ be reduced words (possibly empty) such that $A B A^{-} C B^{-} C^{-} \neq e$ and $A B, A^{-} C B^{-} C^{-}$are reduced. Then the following hold:
(3.1) If $A \equiv A_{0} B$, then $A_{0} B, A_{0}^{-} C B^{-} C^{-}$are reduced and the identity $A_{0} B A_{0}^{-} C B^{-} C^{-}=A B A^{-} C B^{-} C^{-}$holds. In addition if $A_{0} B A_{0}^{-}$, $C B^{-} C^{-} \in F_{m}$, then $A B A^{-}, C B^{-} C^{-} \in F_{m}$.
(3.2) If $B \equiv B_{0} A$, then $A B_{0}, C A^{-} B_{0}^{-} C^{-}$are reduced and the identity $A B_{0} C A^{-} B_{0}^{-} C^{-}=A B A^{-} C B^{-} C^{-}$holds. In addition if $A B_{0}$, $C A^{-} B_{0}^{-} C^{-} \in F_{m}$, then $A B A^{-}, C B^{-} C^{-} \in F_{m}$.
(3.3) If $B \equiv B_{0} Z$ and $A \equiv A_{0} Z$ for non-empty words A_{0}, B_{0} and $B_{0} A_{0}^{-}$ is reduced, then $A_{0} Z B_{0} A_{0}^{-} C Z^{-} B_{0}^{-} C^{-}$is reduced. In addition if $A_{0} Z B_{0} A_{0}^{-}, C Z^{-} B_{0}^{-} C^{-} \in F_{m}$, then $A B A^{-}, C B^{-} C^{-} \in F_{m}$.

Proof. The proof is not difficult, so we only indicate the main steps. Checking that the words are elements of F_{m} is a matter of straightforward calculations.
(3.1) Since $A_{0} B$ is A itself and $A_{0}^{-} C B^{-} C^{-}$is a subword of $A^{-} C B^{-} C^{-}$, they are reduced by assumption.
(3.2) Since $A B_{0}$ is a subword of $A B$ and $C A^{-} B_{0} C^{-}$is a subword of $A^{-} C B^{-} C^{-}$, they are reduced.
(3.3) Since $A_{0} Z B_{0}$ is a subword of $A B$ and $A_{0}^{-} C Z^{-} B C^{-}$is a subword of $A^{-} C B^{-} C^{-}$, they are reduced and hence $A_{0} Z B_{0} A_{0}^{-} C Z^{-} B_{0}^{-} C^{-}$is reduced by the assumption of (3.3).

The following lemma can be proved similarly to the preceding Lemma 3.3 and we omit its proof.

Lemma 3.4. Let $A, B, C \in \mathcal{W}\left(E_{n}\right)$ be reduced words (possibly empty) such that $A B A^{-} C B^{-} C^{-} \neq e$ and $A, B A^{-} C B^{-} C^{-}$are reduced words. Then the following hold:
(4.1) If $A \equiv A_{0} B^{-}$, then $A_{0}, B A_{0}^{-} C B^{-} C^{-}$are reduced and the identity $A_{0} B A_{0}^{-} C B^{-} C^{-}=A B A^{-} C B^{-} C^{-}$holds. In addition if $A_{0} B A_{0}^{-}$, $C B^{-} C^{-} \in F_{m}$, then $A B A^{-}, C B^{-} C^{-} \in F_{m}$.
(4.2) If $B \equiv A^{-} B_{0}$, then $B_{0}, B_{0} A^{-} C B_{0}^{-} A C^{-}$are reduced and the identity $B_{0} A^{-} C B_{0} A C^{-}=A B A^{-} C B^{-} C^{-}$holds. In addition if $B_{0} A^{-}$, $C B_{0}^{-} A C^{-} \in F_{m}$, then $A B A^{-}, C B^{-} C^{-} \in F_{m}$.
(4.3) If $A \equiv A_{0} Z^{-}$and $B \equiv Z B_{0}$ for non-empty words A_{0}, B_{0} and $A_{0} B_{0}$ is reduced, then $A_{0} B_{0} Z A_{0}^{-} C B_{0}^{-} Z^{-} C^{-}$is reduced and the identity $A_{0} B_{0} Z A_{0}^{-} C B_{0}^{-} Z^{-} C^{-}=A B A^{-} C B^{-} C^{-}$holds. In addition if $A_{0} B_{0} Z A_{0}^{-}, C B_{0}^{-} Z^{-} C^{-} \in F_{m}$, then $A B A^{-}, C B^{-} C^{-} \in F_{m}$.

The following lemma is used several times in the proof of the main theorem.

Lemma 3.5. Let $A, B, C, D \in \mathcal{W}\left(E_{n}\right)$ be reduced non-empty words.
(1) If $A B A^{-} B^{-}$is reduced and $A B A^{-} B^{-} \in F_{m}$ and at least one of A, B is not small, then $A, B \in F_{m}$.
(2) If $A B C A^{-} B^{-} C^{-}$is reduced and $A B C A^{-} B^{-} C^{-} \in F_{m}$ at least one of A, B, C is not small, then $A, B, C \in F_{m}$.
(3) If $C A B C^{-} D A^{-} B^{-} D^{-}$is reduced and $C A B C^{-} D A^{-} B^{-} D^{-} \in F_{m}$, then $A, B, C, D \in F_{m}$.
(4) If $C A C^{-} D A^{-} D^{-}$is reduced and $C A C^{-} D A^{-} D^{-} \in F_{m}$, then $C A C^{-}$, $D A^{-} D^{-} \in F_{m}$.

Proof. The statements (1) and (2) are paraphrases of Lemma 2.13.
(3) Let c be the head of C and d be the tail of D^{-}. Since c^{-}immediately precedes d^{-}, we have $C A B C^{-}, D A^{-} B^{-} D^{-} \in F_{m}$. Since $A B, A^{-} B^{-}$are reduced and both A and B are non-empty, $A B$ is cyclically reduced. Now the conclusion follows from Lemmas 2.11 and 2.12.
The proof of (4) follows the reasoning in the proof of (3).
Lemma 3.6. Let $A^{-} B^{-}$and $X_{0} A B X_{0}^{-}$be reduced words such that $X_{0} A B \equiv$ $B A X_{1}$ for some X_{1}. If $\operatorname{lh}\left(X_{0}\right) \leq \operatorname{lh}(B)$, then there exist A^{\prime}, B^{\prime} such that $\ln \left(B^{\prime}\right)<\operatorname{lh}(B),\left(A^{\prime}\right)^{-}\left(B^{\prime}\right)^{-}$and $X_{0} A^{\prime} B^{\prime} X_{0}^{-}$are reduced words, $X_{0} A^{\prime} B^{\prime} \equiv$ $B^{\prime} A^{\prime} X_{1}, A^{-} B^{-} X_{0} A B X_{0}^{-}=\left(A^{\prime}\right)^{-}\left(B^{\prime}\right)^{-} X_{0} A^{\prime} B^{\prime} X_{0}^{-}$, and $A, B \in\left\langle X_{0}, A^{\prime}, B^{\prime}\right\rangle$.

Proof. First note that $l h\left(X_{0}\right) \neq l h(B)$ since $B X_{0}^{-}$is reduced. Hence $l h(B)>$ $\operatorname{lh}\left(X_{0}\right)$. If $l h(B)=\operatorname{lh}\left(X_{0}\right)+\operatorname{lh}(A)$, then we have $X_{0} A \equiv B \equiv A X_{1}$ and have the conclusion, i,e, $A^{\prime} \equiv A$ and $B^{\prime} \equiv \emptyset$.

If $\operatorname{lh}(B)<\operatorname{lh}\left(X_{0}\right)+\operatorname{lh}(A)$, we have $k>0$ and A_{0}, A_{1} such that $B \equiv$ $X_{0} A_{0} A_{1}, A \equiv\left(A_{0} A_{1}\right)^{k} A_{0}$, and A_{1} is non-empty. (Note that A_{0} may be empty.) Let $A^{\prime} \equiv A_{0}$ and $B^{\prime} \equiv A_{1}$. Since $\operatorname{lh}\left(X_{0}\right)+\operatorname{lh}(A)=\operatorname{lh}(B)+(k-$ 1) $\operatorname{lh}\left(A_{0} A_{1}\right)+\operatorname{lh}\left(A_{0}\right)$, we have $B \equiv A_{1} A_{0} X_{1}$. Let $A^{\prime} \equiv A_{0}$ and $B^{\prime} \equiv A_{1}$, then we have the conclusion.

If $\operatorname{lh}(B)>\operatorname{lh}\left(X_{0}\right)+\operatorname{lh}(A)$, we have $k>0$ and B_{0}, B_{1} such that $B_{0} B_{1} \equiv$ $X_{0} A, B \equiv\left(B_{0} B_{1}\right)^{k} B_{0}$, and B_{1} is non-empty. Note that B_{0} may be empty.) Since $\operatorname{lh}\left(B_{1} B_{0}\right)=\operatorname{lh}\left(A X_{1}\right)$, we have $B_{1} B_{0} \equiv A X_{1}$. Now $B \equiv X_{0} A\left(B_{0} B_{1}\right)^{k-1} B_{0} \equiv$ $\left(B_{0} B_{1}\right)^{k-1} B_{0} A X_{1}$ holds. Let $A^{\prime} \equiv A$ and $B^{\prime} \equiv\left(B_{0} B_{1}\right)^{k-1}$, then we have the conclusion.

Note that in Lemma 3.6 we have the following identity $A^{-} B^{-} X_{0} A B X_{0}^{-}=$ $X_{1} X_{0}^{-}=\left(A^{\prime}\right)^{-}\left(B^{\prime}\right)^{-} X_{0} A^{\prime} B^{\prime} X_{0}^{-}$.

Lemma 3.7. Let $A, B, X, Y \in \mathcal{W}\left(E_{n}\right)$ be reduced words (possibly empty) such that X and Y are non-empty, $Y^{-} A^{-} B^{-} Y X^{-} A B X \neq e, Y^{-} A^{-} B^{-} Y$ and $X^{-} A B X$ are reduced words, and the reduced word of $Y^{-} A^{-} B^{-} Y X^{-} A B X$ is cyclically reduced.

If $Y^{-} A^{-} B^{-} Y X^{-} A B X \in F_{m}$, then
(1) $Y^{-} A^{-} B^{-} Y, X^{-} A B X \in F_{m}$, or
(2) $Y^{-} A^{-} B^{-} Y X^{-} A B X$ is equal to c_{s} or c_{s}^{-}for some s such that $l h(s)=$ m and s is binary branched.

Proof. If $Y X^{-}$is reduced, then $Y^{-} A^{-} B^{-} Y X^{-} A B X$ is cyclically reduced. By an argument analyzing the head and the tail of Y^{-}and X we can see $Y^{-} A^{-} B^{-} Y, X^{-} A B X \in F_{m}$.

Otherwise, in the cancellation of $Y^{-} A^{-} B^{-} Y X^{-} A B X$ the leftmost Y^{-}or the rightmost X is deleted. Since $Y^{-} A^{-} B^{-} Y X^{-} A B X \neq e$ and $\operatorname{lh}\left(Y^{-} A^{-} B^{-} Y\right)=$ $2 \operatorname{lh}(Y)+\operatorname{lh}(A B)$ and $\operatorname{lh}\left(X^{-} A B X\right)=2 \operatorname{lh}(X)+\operatorname{lh}(A B), \operatorname{lh}(X) \neq \operatorname{lh}(Y)$. We suppose that $\operatorname{lh}(X)>\operatorname{lh}(Y)$, i.e. the head of Y^{-}is deleted. Then we have $X \equiv Z Y$ for a non-empty word Z.

We first analyze the reduced word of $A^{-} B^{-} Z^{-} A B Z$, where $A^{-} B^{-}$is deleted. The head part of $Z^{-} A B$ is $B A$. Applying Lemma 3.6 for $X_{0} \equiv Z^{-}$ and X_{1} repeatedly, we have reduced words A_{0} and B_{0} such that $Z^{-} A_{0} B_{0} Z$ is reduced, $Z^{-} A_{0} B_{0} \equiv B_{0} A_{0} X_{1}$ for some $X_{1}, A_{0}^{-} B_{0}^{-} Z^{-} A_{0} B_{0} Z=A^{-} B^{-} Z^{-} A B Z$, $A, B \in\left\langle Z, A_{0}, B_{0}\right\rangle$ and $\operatorname{lh}\left(B_{0}\right)<\operatorname{lh}(Z)$.

It never occurs that both A_{0} and B_{0} are empty, but one of A_{0} and B_{0} may be empty. If $B_{0}=\emptyset$, interchange the role of A_{0} and B_{0} and by Lemma 3.6 we can assume B_{0} is non-empty and $\operatorname{lh}\left(B_{0}\right)<\operatorname{lh}(Z)$.

First we deal with the case A_{0} is empty. Since the leftmost B_{0}^{-}is deleted in the reduction of $B_{0}^{-} Z^{-} B_{0} Z$, we have non-empty Z_{0} such that $Z \equiv Z_{0} B_{0}^{-}$and have a reduced word $Z_{0}^{-} B_{0} Z_{0} B_{0}^{-}$with $Z_{0}^{-} B_{0} Z_{0} B_{0}^{-}=B_{0}^{-} Z^{-} B_{0} Z$. Since the leftmost Y^{-}is deleted in the reduction of $Y^{-} B_{0}^{-} Z^{-} B_{0} Z Y$ and $Z_{0}^{-} B_{0} Z_{0} B_{0}^{-} Y$ is reduced, $Z_{0}^{-} B_{0} Z_{0} B_{0}^{-}$is cyclically reduced and hence the reduced word of $Y^{-} A^{-} B^{-} Y X^{-} A B X$ is a cyclical transformation of $Z_{0}^{-} B_{0} Z_{0} B_{0}^{-}$. By the fact that Y is the head part of $B_{0}^{-} Z^{-} B_{0} Z Y, Y$ is of the form $\left(Z_{0}^{-} B_{0} Z_{0} B_{0}^{-}\right)^{k} Y_{0}$ where $Y_{0} Y_{1} \equiv Z_{0}^{-} B_{0} Z_{0} B_{0}^{-}$for some non-empty Y_{1} and $k \geq 0$.

If Y_{0} is empty, we have $Y^{-} A^{-} B^{-} Y X^{-} A B X=Z_{0}^{-} B_{0} Z_{0} B_{0}^{-}$. If one of Z_{0} and B_{0} is not small, then $Z_{0}, B_{0} \in F_{m}$ by Lemma 2.13 and we have $Y^{-} A^{-} B^{-} Y, X^{-} A B X \in F_{m}$ by Lemma 3.6 and the fact $Y=\left(Z_{0}^{-} B_{0} Z_{0} B_{0}^{-}\right)^{k}$. Otherwise, i.e., when of Z_{0} and B_{0} are small, $Y^{-} A^{-} B^{-} Y X^{-} A B X=Z_{0}^{-} B_{0} Z_{0} B_{0}^{-}$ is equal to c_{s} or c_{s}^{-}for some s such that $l h(s)=m$ and s is binary branched by Lemma 2.14.

If $Y_{0} \equiv Z_{0}^{-}, Y_{0} \equiv Z_{0}^{-} B_{0}$ or $Y_{0} \equiv Z_{0}^{-} B_{0} Z_{0}$, the argument is similar to the case that Y_{0} is empty. Otherwise Y_{0} ends somewhere in the middle of one of the words Z_{0}^{-}, B_{0}, Z_{0} or B_{0}^{-}. Since the arguments are similar, we only deal with the case that $Y_{0} \equiv Z_{0}^{-} B_{1}$ where $B_{1} B_{2} \equiv B_{0}$ for non-empty B_{1} and B_{2}. Then $Y^{-} A^{-} B^{-} Y X^{-} A B X=B_{2} Z_{0} B_{2}^{-} B_{1}^{-} Z_{0}^{-} B_{1}$ and hence $B_{2} Z_{0} B_{2}^{-}, B_{1}^{-} Z_{0}^{-} B_{1} \in F_{m}$ by Lemma 3.5 (4). Let Z_{1} be a cyclically reduced word such that $Z_{0} \equiv U^{-} Z_{1} U$. Then $Z_{1}, B_{2} U^{-}, U B_{1} \in F_{m}$ by Lemma 2.11. Now

$$
\begin{aligned}
Y^{-} Z_{0} Y & =B_{1}^{-} Z_{0}\left(B_{1} B_{2} Z_{0}^{-} B_{2}^{-} B_{1}^{-} Z_{0}\right)^{k} Z_{0}\left(Z_{0}^{-} B_{1} B_{2} Z_{0} B_{2}^{-} B_{1}^{-}\right)^{k} Z_{0}^{-} B_{1} \\
& =\left(B_{1}^{-} Z_{0} B_{1} B_{2} Z_{0}^{-} B_{2}^{-}\right)^{k} B_{1}^{-} Z_{0} B_{1}\left(B_{2} Z_{0} B_{2}^{-} B_{1}^{-} Z_{0}^{-} B_{1}\right)^{k}, \\
Y^{-} B_{0} Y & =B_{1}^{-} Z_{0}\left(B_{1} B_{2} Z_{0}^{-} B_{2}^{-} B_{1}^{-} Z_{0}\right)^{k} B_{1} B_{2}\left(Z_{0}^{-} B_{1} B_{2} Z_{0} B_{2}^{-} B_{1}^{-}\right)^{k} Z_{0}^{-} B_{1} \\
& =B_{1}^{-} Z_{0} B_{1}\left(B_{2} Z_{0}^{-} B_{2}^{-} B_{1}^{-} Z_{0} B_{1}\right)^{k} B_{2} Z_{0}^{-} B_{1}\left(B_{2} Z_{0} B_{2}^{-} B_{1}^{-} Z_{0}^{-} B_{1}\right)^{k} .
\end{aligned}
$$

Hence $Y^{-} Z_{0} Y, Y^{-} B_{0} Y \in F_{m}$. Since $Z=Z_{0} B_{0}^{-}$and A, B are elements of the subgroup $\left\langle Z, B_{0}\right\rangle$ generated by Z and B_{0}, we have $Y^{-} A B Y, X^{-} A^{-} B^{-} X \in$ F_{m}.

Next we suppose that A_{0} is non-empty. We have $k>0$ and A_{1} and A_{2} such that $Z^{-} \equiv B_{0} A_{1} A_{2}, A_{0} \equiv\left(A_{1} A_{2}\right)^{k} A_{1}, X_{1} \equiv A_{2} A_{1} B_{0}$. Since $X^{-} A B \equiv$ $U X_{1}$ for some U and $X^{-} A B Z$ is reduced, $X_{1} Z \equiv A_{2} A_{1} B_{0} A_{2}^{-} A_{1}^{-} B_{0}^{-}$is a reduced word. By the assumption a reduced word of $Y^{-} A_{2} A_{1} B_{0} A_{2}^{-} A_{1}^{-} B_{0}^{-} Y$ is cyclically reduced and $A_{2} A_{1} B_{0} A_{2}^{-} A_{1}^{-} B_{0}^{-} Y$ is reduced, hence $X_{1} Z \equiv$ $A_{2} A_{1} B_{0} A_{2}^{-} A_{1}^{-} B_{0}^{-}$is cyclically reduced and the reduced word of $Y^{-} A_{2} A_{1} B_{0} A_{2}^{-} A_{1}^{-} B_{0}^{-} Y$ is given by a cyclical transformation of $A_{2} A_{1} B_{0} A_{2}^{-} A_{1}^{-} B_{0}^{-}$. Hence $Y \equiv$ $\left(A_{2} A_{1} B_{0} A_{2}^{-} A_{1}^{-} B_{0}^{-}\right)^{k} Y_{0}$ where $k \geq 0$ and $A_{2} A_{1} B_{0} A_{2}^{-} A_{1}^{-} B_{0}^{-} \equiv Y_{0} Y_{1}$ for some Y_{1}.

For instance the reduced word of $Y^{-} A_{2} A_{1} B_{0} A_{2}^{-} A_{1}^{-} B_{0}^{-} Y$ is of the form $B_{0} A_{2}^{-} A_{1}^{-} B_{0}^{-} A_{2} A_{1}$ or $B_{2} A_{2}^{-} A_{1}^{-} B_{2}^{-} B_{1}^{-} A_{2} A_{1} B_{1}$ where $B_{0} \equiv B_{1} B_{2}$. By Lemma 3.5 (4) or (3) respectively we conclude $A_{1}, A_{2}, B_{0} \in F_{m}$ or $A_{1}, A_{2}, B_{1}, B_{2} \in F_{m}$ which implies $Y^{-} A B Y, X^{-} A^{-} B^{-} X \in F_{m}$.

4. Proof of Theorem 1.1

Lemma 4.1. For every grope group G^{S} the following hold:
If $e \neq[u, v] \in F_{m}$ and at least one of u and v does not belong to F_{m}, then $[u, v]$ is conjugate to c_{s} or c_{s}^{-}in F_{m} for some s such that $l h(s)=m$ and s is binary branched.

Proof. We have $n>m$ such that $u, v \in F_{n}$. It suffices to show the lemma in case that the reduced word for $[u, v]$ is cyclically reduced. For, suppose that we have the conclusion of the lemma in the indicated case. Let $[u, v] \in F_{m}$ and $[u, v]=X Y X^{-}$where $X Y X^{-}$is a reduced word and Y is cyclically reduced. Then we have $\left[X^{-} u X, X^{-} v X\right]=X^{-}[u, v] X=Y$. On the other hand $X, Y \in F_{m}$ by Lemma 2.11. By the assumption at least one of $X^{-} u X$ and $X^{-} v X$ does not belong to F_{m}. Since $[u, v]$ is conjugate to Y in F_{m}, we have the conclusion.

Let $u, v \in F_{n}$ such that $[u, v] \neq e$ and the reduced word for $[u, v]$ is cyclically reduced. There exist a cyclically reduced non-empty word $V_{0} \in$ $\mathcal{W}\left(E_{n}\right)$ and a reduced word $X \in \mathcal{W}\left(E_{n}\right)$ such that $v=X^{-} V_{0} X$ and the word $X^{-} V_{0} X$ is reduced. Let U_{0} be a reduced word for $u X^{-}$. Since V_{0} is a cyclically reduced word, at least one of $U_{0} V_{0}$ and $V_{0} U_{0}^{-}$is reduced. When $U_{0} V_{0}$ is reduced, there exist $k \geq 0$ and reduced words Y, A, B such that $U_{0} \equiv Y^{-} A V_{0}^{k}, V_{0} \equiv B A$, and $Y^{-} A B Y$ is reduced. When, however, $V_{0} U_{0}^{-}$is reduced, there exist $k \geq 0$ and reduced words Y, A, B such that $U_{0} \equiv Y^{-} A\left(V_{0}^{-}\right)^{k}, V_{0} \equiv B A$, and $Y^{-} A B Y$ is reduced. In both bases uvu ${ }^{-1}=$ $Y^{-} A B Y$ and $v=X^{-} B A X$. Note that $A B$ and $B A$ are cyclically reduced.

We analyze the reduction procedure of $Y^{-} A B Y X^{-} A^{-} B^{-} X$ in the three cases.
(Case 0): X and Y are empty.

In this case both A and B are non-empty and we can use Lemma 3.1. Using (1.1) and (1.2) alternately and (1.3) possibly as the last step we obtain the reduced word $A_{0} Z B_{0} A_{0}^{-} Z^{-} B_{0}^{-}$of $A B A^{-} B^{-}$. Now there are two possibilities: If one of A_{0}, Z, B_{0} is not small, by (1) and (2) of Lemma 3.5 $A_{0}, B_{0}, Z \in F_{m}$; by applying Lemma 3.1 repeatedly we get $A, B \in F_{m}$. If, however, A_{0}, B_{0}, Z are not small, by Lemma 2.14 one of A_{0}, B_{0}, Z is empty and $[u, v]=c_{s}$ or $[u, v]=c_{s}^{-}$for some binary branched s with $\operatorname{lh}(s)=m$. (Case 1): Exactly of X and Y is empty.

Since the arguments are symmetric, we only deal with the case Y is empty and X is not empty. Therefore at least one of A and B is nonempty. As before we use Lemmas 3.2, 3.3, 3.4 to get the reduced word $A_{0} U V A_{0}^{-} C U^{-} V^{-} C^{-}$of $A B X^{-} A^{-} B^{-} X$. Depending on the possibility that some of the above words are empty we apply one of (2), (3) or (4) of Lemma 3.5 to get $A, U, V, C \in F_{m}$. By applying Lemmas 3.2, 3.3, 3.4 repeatedly we get $A, B \in F_{m}$, which implies $u, v \in F_{m}$, or $[u, v]=c_{s}$ etc. as in (Case 0).
(Case 2): Both X and Y are non-empty.
This follows directly from Lemma 3.7. Only in this case we use the assumption that the reduced word of $Y^{-} A B Y X^{-} A^{-} B^{-} X$ is cyclically reduced.

Lemma 4.2. Let F be the free group generated by the set B and $a, b \in B$ be distinct elements. If $[a, b]=[u, v]$ for $u, v \in F$, then neither u nor v belongs to the commutator subgroup of F.

Proof. Since a, b are generators, $[a, b] \notin[F,[F, F]]$ (Theorem 11.2.4,[7]) and the conclusion follows.

Lemma 4.3. Let F be the free group generated by the set B and $a, b \in B$ be distinct. If $c, d \in\left\{\beta, \beta^{-}: \beta \in B\right\}$ and $[a, b]=\left[x^{-1} c x, y^{-1} d y\right]$ for $x, y \in F$, then $c, d \in\left\{a, a^{-}, b, b^{-}\right\}$and moreover $c \in\left\{a, a^{-}\right\}$iff $d \in\left\{b, b^{-}\right\}$, and $c \in\left\{b, b^{-}\right\}$iff $d \in\left\{a, a^{-}\right\}$.
Proof. Using the canonical projection to the subgroup $\langle a, b\rangle$ we see that $c, d \in\left\{a, a^{-}, b, b^{-}\right\}$. To see the remaining part it suffices to show that if $c=a$, and $d=a$ or a^{-}, then $[a, b] \neq\left[x^{-1} c x, y^{-1} d y\right]$ for any x, y.

We show that $a b a^{-} b^{-}$is not cyclically equivalent to the reduced word of $\left[x^{-1} c x, y^{-1} d y\right]$. For this purpose we may assume $x=e$. We only deal with $d=a$. We have a reduced word Y such that $y^{-1} a y=Y^{-} a Y$ and $Y^{-} a Y$ is reduced. (Note that $y \neq Y$ is possible.) The head of Y is not a nor a^{-}, since $Y^{-} a Y$ is reduced. When the tail of Y is a or a^{-}, we choose $n \geq 0$ so that $Y \equiv Z a^{n}$ or $Y \equiv Z\left(a^{-}\right)^{n}$ respectively and n is maximal. Then Z is non-empty. Now $a Z^{-} a Z a^{-} Z^{-} a^{-} Z$ is a cyclically reduced word which is cyclically equivalent to $a Y^{-} a Y a^{-} Y^{-} a^{-} Y$. Since $a Z^{-} a Z a^{-} Z^{-} a^{-} Z$ is not cyclically equivalent to $a b a^{-} b^{-}$, we have the conclusion.

Proof of Theorem 1.1. Let $h: G^{S_{0}} \rightarrow G^{S}$ be a nontrivial homomorphism. Let $c_{s}=c_{s}^{S_{0}}, d_{t}=c_{t}^{S}, F_{n}=F_{n}^{S}$, and $E_{n}=E_{n}^{S}$. Then there exists $s_{*} \in S_{0}$
such that $h\left(c_{s_{*}}\right)$ is nontrivial (clearly for every finite sequence s starting with s_{*} also $h\left(c_{s}\right)$ is nontrivial).

We have n such that $h\left(c_{s_{*}}\right) \in F_{n}$. Since F_{n} is free, $\operatorname{Im}(h)$ is not included in F_{n} and hence there exists $\varsigma \in S_{0}$ starting with s_{*} and such that $h\left(c_{\varsigma}\right) \in F_{n}$, but $h\left(c_{\varsigma}\right) \notin F_{n}$ or $h\left(c_{\varsigma 1}\right) \notin F_{n}$. Then by Lemma 4.1 we have $d_{\tau} \in E_{n}$ such that $h\left(c_{\varsigma}\right)$ is conjugate to d_{τ} or d_{τ}^{-}and τ is binary branched.

Moreover, Lemma 2.10 implies that neither $h\left(c_{\varsigma 0}\right)$ nor $h\left(c_{\varsigma 1}\right)$ belongs to F_{n}. We show the following by induction on $k \in \mathbb{N}$:
(1) For $u \in \operatorname{Seq}(\underline{2})$ with $\operatorname{lh}(u)=k$
(a) $h\left(c_{\varsigma u}\right)$ is conjugate to $d_{\tau v}$ or $d_{\tau v}^{-}$in F_{n+k} and τv is binary branched for some $v \in \operatorname{Seq}(\underline{2})$ with $h(v)=k$;
(b) Neither $h\left(c_{\varsigma u 0}\right)$ nor $h\left(c_{\varsigma u 1}\right)$ belongs to F_{n+k};
(2) For every $v \in \operatorname{Seq}(\underline{2})$ with $\operatorname{lh}(v)=k$ there exists $u \in \operatorname{Seq}(\underline{2})$ such that $l h(u)=k$ and $h\left(c_{\varsigma u}\right)$ is conjugate to $d_{\tau v}$ or $d_{\tau v}^{-}$in F_{n+k}.

We have shown that this holds when $k=0$.
Suppose that (1) and (2) hold for k. Let $l h(u)=k$ and $h\left(c_{\varsigma u}\right)=$ $\left[h\left(c_{\varsigma u 0}\right), h\left(c_{\varsigma u 1}\right)\right]$ is conjugate to $d_{\tau v}=\left[d_{\tau v 0}, d_{\tau v 1}\right]$ or $d_{\tau v}^{-}=\left[d_{\tau v 1}, d_{\tau v 0}\right]$ in F_{n+k}.

We claim $h\left(c_{\varsigma u 0}\right) \in F_{n+k+1}$. To show this by contradiction, suppose that $h\left(c_{\varsigma u 0}\right) \notin F_{n+k+1}$. Apply Lemma 4.1 to F_{n+k+1}, then we have $\left[h\left(c_{\varsigma u 0}\right), h\left(c_{\varsigma u 1}\right)\right]$ is conjugate to d_{t} or d_{t}^{-}with $l h(t)=n+k+1$ in F_{n+k+1}, which is impossible since $\left[h\left(c_{\varsigma u 0}\right), h\left(c_{\varsigma u 1}\right)\right] \in\left[F_{n+k+1}, F_{n+k+1}\right]$. Similarly we have $h\left(c_{\varsigma u 1}\right) \in$ F_{n+k+1}.

On the other hand, neither $h\left(c_{\varsigma u 0}\right)$ nor $h\left(c_{\varsigma u 1}\right)$ belongs to [F_{n+k+1}, F_{n+k+1}] by Lemma 4.2. Hence at least one of $h\left(c_{\varsigma u 00}\right)$ and $h\left(c_{\varsigma u 01}\right)$ does not belong to F_{n+k+1} and consequently neither $h\left(c_{\varsigma u 00}\right)$ nor $h\left(c_{\varsigma u 01}\right)$ belongs to F_{n+k+1} by Lemma 2.10.

Hence $h\left(c_{\varsigma u 0}\right)$ is conjugate to d_{t} or d_{t}^{-}with $l h(t)=n+k+1$ by Lemma 4.1. Similarly, $h\left(c_{\varsigma u 1}\right)$ is conjugate to $d_{t^{\prime}}$ or $d_{t^{\prime}}^{-}$with $l h\left(t^{\prime}\right)=n+k+1$. Since $h\left(c_{\varsigma u}\right)=\left[h\left(c_{\varsigma u 0}\right), h\left(c_{\varsigma u 1}\right)\right]$ is conjugate to $d_{\tau v}=\left[d_{\tau v 0}, d_{\tau v 1}\right]$ or $d_{\tau v}^{-}=\left[d_{\tau v 0}, d_{\tau v 1}\right]$ in $F_{n+k+1}, h\left(c_{\varsigma u 0}\right)$ and $h\left(c_{\varsigma u 1}\right)$ are conjugate to $d_{\tau v j}$ or $d_{\tau v j}^{-}$for some $j \in \underline{2}$ and for each $j \in \underline{2}$ the element $d_{\tau v j}$ is conjugate to exactly one of $h\left(c_{\varsigma u 0}\right)$, $h\left(c_{\varsigma u 1}\right), h\left(c_{\varsigma u 0}\right)^{-}$or $h\left(c_{\varsigma u 1}\right)^{-}$by Lemma 4.3. Hence (1) and (2) hold for $k+1$. Now we have shown the induction step and finished the proof.

Remark 4.4. Though the conclusion of Theorem 1.1 is rather simple, embeddings from $G^{S_{0}}$ into G^{S} may be complicated. In particular the group of automorphisms of $G^{S_{0}}$ is uncountable. We explain this more precisely. Observe that

$$
\left[d c^{-} d^{-}, d c d^{-} c^{-} d^{-}\right]=d c^{-} d^{-} d c d^{-} c^{-} d^{-} d c d^{-} d c d c^{-} d^{-}=c d c^{-} d^{-}=[c, d] .
$$

For $T \subseteq S_{0}$ we define $\varphi_{T}\left(c_{s 0}\right)=c_{s 1} c_{s 0}^{-} c_{s 1}^{-}$and $\varphi_{T}\left(c_{s 1}\right)=c_{s 1} c_{s 1}^{-} c_{s 0}^{-} c_{s 1}^{-}$for $s \in T$ and $\varphi_{T}\left(c_{s 0}\right)=c_{s 0}$ and $\varphi_{T}\left(c_{s 1}\right)=c_{s 1}$ for $s \notin T$. Then we have automorphisms $\varphi_{S} \neq \varphi_{T}$ for distinct subsets S and T of S_{0}. Hence we have uncountable many automorphism on $G^{S_{0}}$. In particular this shows that
there are uncountably many self-homotopy equivalences of the minimal grope since for every one of the countably many attached 2-cells we have a choice of more than one possibility to extend the self-homotopy equivalence.

References

[1] B. Badzioch, M. Feshbach, A note on localizations of perfect groups, Proc. Amer. Math. Soc., 133, (2004) 693-697.
[2] A.J. Berrick, C. Casacuberta, A universal space for plus-constructions, Topology 1999.
[3] J.W. Cannon, The recognition problem: What is a topological manifold?, Bull. A.M.S. 84 (1978), 832-866.
[4] M. Cencelj, D. Repovš, On compacta of cohomological dimension one over nonabelian groups, Houston J. Math. 26 (2000), 527-536.
[5] A.N. Dranishnikov, D. Repovš, Cohomological dimension with respect to perfect groups, Topology and Its Applications 74, (1996) 123-140.
[6] E.W. Ellers, N. Gordeev, On the conjectures of Thompson and Ore, Trans. Amer. Math. Soc., 350, (1998) 3657-3671.
[7] M. Hall Jr., The theory of groups, Macmillan, 1959.
[8] A. Heller, On the Homotopy Theory of Topogenic Groups and Groupoids, Ill. J. Math., 24, (1980) 576-605.
[9] O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc., 272, (1951) 307-314.
[10] J. J. Rotman, An introduction to the theory of groups, Springer-Verlag, 1994.
[11] M.A. Štan'ko, Approximation of compacta in E^{n} in codimension greater than two, Mat. Sb. 90 (132) (1973), 625-636 (Math. USSR-Sb. 19 (1973), 615-626).
[12] P. Teichner, What is . . a grope?, Notices AMS, 51, no. 8, 894-895, 2004.
[13] M.J. Wicks, Commutators in free products, J. London Math. Soc., 39, (1962) 433-444.
Matija Cencelj
IMFM,
University of Ljubljana,
Jadranska 19,
Ljubljana,
SLOVENIA,
matija.cencelj@guest.arnes.si
Katsuya Eda
Department of Mathematics, Waseda University,
Tokyo 169-8555,
JAPAN,
eda@waseda.jp
Aleš Vavpetič
IMFM,
University of Ljubljana,

Jadranska 19,
Ljubljana,
SLOVENIA,
ales.vavpetic@fmf.uni-lj.si

