is a covering homomorphism (Corollary 3.13): In this way we generalize a previ-

 $= card \, S_{B_n - 1} = card \, S_{B_n} = card \, f^{-1}(fy^0g);$

for f

KATSUYA EDA AND VP8178(A)-93(S)-7T(Y)-1(A)-8(M(Y)1196(A)-1(T)-9I)-52(J(D)977(E)-8V(T)-9I)]TJ254.3571.71598

Proof. Choose an arbitrary poin7

Suppose that () holds for V . For x 2 C, denote by W_x an open neighborhood of x such that fj $\ensuremath{\mathsf{W}}$

KATSUYA EDA AND VLASTA MATIJEVIĆ

respect to V which starts in

KATSUYA EDA AND VLASTA MATIJEVI

that for each y 2 $\overline{f(C \ [\ C_b)f(C \ [\ C_b))}$ there exists B 2 B such that

points $z_{i;j} = f(a_i)f(a)^{-1}f(a_j); 0$ i; j m: Since $f(a_{i+1}) 2 f(a_i) \vee \vee f(a_i); 0$ i < m; we get

$$z_{i:j+1} = f(a_i)f(a)^{-1}f(a_{j+1}) 2 f(a_i)f(a)^{-1}f(a_j)V$$

of Lemma 3.6. Let $v_i=f(a_{i\,+\,1})f(a_i)^{-1}$ and $w_j=f(b_j)^{-1}f(b_{j\,+\,1})$ be from Claim 1. Then, $v_i;w_j$ 2 V and we see that $f(b_j)f(a$

Since in each topological group the group operation and taking inverse are con-

KATSUYA EDA AND VLASTA MATIJEVIĆ