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Abstract. Let Y be a connected group and let f : X → Y be a covering map
with the connected total space X. We consider the following question: Is it

possible to define a topological group structure on X in such a way that f be-
comes a homomorphism of topological groups. The answer is positive in some
particular cases: if Y is a pathwise connected and locally pathwise connected

group or if f is a finite-sheeted covering map over a compact connected group
Y. However, using shape-theoretic techniques and Fox’s notion of an overlay
map, we answer the question in the negative. We consider infinite-sheeted
covering maps over solenoids, i.e. compact connected 1-dimensional abelian

groups. First we show that an infinite-sheeted covering map f : X → Σ with
a connected total space over a solenoid Σ, does not admit a topological group
structure on X such that f becomes a homomorphism. Then, for an arbitrary
solenoid Σ, we construct a connected space X and an infinite-sheeted covering

map f : X → Σ, which provides the negative answer to the question.

1. Introduction

In studying covering maps over topological groups a natural question arises: Is
it always possible to define a topological group structure on a total space X in
such a way that a covering map f : X → Y over a topological group Y becomes
a homomorphism of topological groups? The answer to the question is positive
in some important cases. In particular, the answer is positive if Y is a pathwise
connected, locally pathwise connected group and X is a pathwise connected space
([13, Theorem 79]) or if f is a finite-sheeted covering map over a compact connected
group Y and X is connected ([5, Theorem 1], [6, Theorem 1], [1, Lemma 2.9]).
Moreover, the topological group structure on X is unique up to isomorphism of
topological groups and in both cases covering homomorphisms f : X → Y and
f ′ : X ′ → Y are equivalent as covering maps (via a homeomorphism) if and only
if they are equivalent as covering homomorphisms (via a topological isomorphism)
([1, Corollary 2.6, Theorem 2.13]).

In 1972, R.H.Fox, in attempt to extend the classical classification theorem of the
covering space theory to arbitrary connected metric spaces, introduced a notion
of an overlay map ([2], [3]). Every overlay map is a covering map. The converse
implication holds in some particular cases : if Y is a connected locally connected
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paracompact space ([11, Lemma 4]) or if Y is a connected paracompact space and
the number of sheets is finite ([12, Theorem 1]) (see also [3] Theorem 3 for metric
case). Fox has given an example of a covering map over a metric continuum (so-
called the razor clam shell), which is not an overlay map ([3], p. 86). Apparently,
in his example the number of sheets ought to be infinite.

It turns out that the answer to the question is related to the notion of an overlay
map. In the present paper we prove that a covering map f : X → Y over a
compact connected group Y with a connected total space X admits a topological
group structure on X such that f becomes a homomorphism if and only if f is
an overly map (Theorem 2.3, Theorem 2.4 and Corollary 2.5). Using this result
we answer the question in the negative. We investigate infinite-sheeted covering
maps over solenoids, i.e. compact connected 1-dimensional abelian groups. First
we show that an infinite-sheeted covering map f : X → Σ with a connected total
space over a solenoid Σ, does not admit a topological group structure on X such
that f becomes a homomorphism (Corollary 2.6). Then, for each solenoid Σ we
construct a connected space X and an infinite-sheeted covering map f : X → Σ,
which provides the negative answer to the question (Theorem 3.1 and Corollary
3.2).

2. Overlays vs. covering homomorphisms

We start with the definition of an overlay map.
Let Y be a connected topological space, let f : X → Y be a continuous map and

let S be a set of cardinality s = card S. Let B = {B} be an open covering of Y and
let A = {Aσ

B : B ∈ B, σ ∈ S} be an open covering of X. We will say that (A,B) is
an s-sheeted covering pair for f : X → Y provided the following three conditions
are fulfilled:

(C1) f−1(B) =
∪

σ∈S

Aσ
B , B ∈ B;

(C2) Aσ
B ∩Aτ

B = ∅, for σ, τ ∈ S, σ 6= τ ; B ∈ B;
(C3) f |Aσ

B
: Aσ

B → B is a homeomorphism for each Aσ
B ∈ A.

Recall that a mapping f : X → Y is an s-sheeted covering mapping provided it
admits an s-sheeted covering pair (A,B).

An s-sheeted covering pair (A,B) for f : X → Y is said to be an s-sheeted overlay
pair for f provided B is a normal covering and the following additional condition
is fulfilled:

(C4) If B, B′ ∈ B and B∩B′ 6= ∅, then every σ ∈ S admits a unique σ′ ∈ S such
that Aσ

B ∩Aσ′

B′ 6= ∅.
A mapping f : X → Y between topological spaces is said to be an s-sheeted

overlay mapping provided it admits an s-sheeted overlay pair.

Definition 2.1. Let X and Y be topological groups and let f : X → Y be a
map. We say that f is a covering homomorphism if f is a covering map and a
homomorphism of topological groups as well.

Note that in the definition of a covering map we assume the base space Y being
connected in order to achieve all fibers of f be of the same cardinality s. However,
if f : X → Y is a homomorphism of topological groups, all fibers of f are of the
same cardinality s = card(ker f). So, in the definition of a covering homomorphism
we omit the assumption Y being connected.
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Theorem 2.2. Let X and Y be topological groups and let f : X → Y be a continu-
ous epimorphism. If there exist an open neighborhood A ⊆ X of the identity eX ∈ X
and an open neighborhood B ⊆ Y of the identity eY ∈ Y such that f |A : A→ B is
a homeomorphism, then f is an s-sheeted overlay map, where s = card(ker f). In
particular, every covering homomorphism f : X → Y is an overlay map.

Proof. Let U be an open symmetric neighborhood of eX such that UU ⊆ A, and
let V = f(U) ⊆ B. Note that V is an open set in Y. We claim that {Ue : e ∈ ker f}
evenly covers V.

First we show that f−1(V ) =
∪

e∈ker f

Ue. Let x ∈ f−1(V ). Then f(x) ∈ V. Since

f |U : U → V is a homeomorphism, there exists a unique x′ ∈ U such that f(x′) =
f(x). Then (x′)−1x ∈ ker f and consequently x ∈

∪
e∈ker f

Ue. If x ∈
∪

e∈ker f

Ue, then

f(x) ∈ f(U) = V, i.e. x ∈ f−1(V ).
Next we show that subsets Ue, e ∈ ker f, are pairwise disjoint. To see this, assume

x ∈ Ue ∩ Ue′, e, e′ ∈ ker f. Then there exist u, u′ ∈ U such that x = ue = u′e′.
Since f(u) = f(ue) = f(u′e′) = f(u′), it follows u = u′. Hence, e = e′.

Since f |U : U → V is homeomorphism, f |Ue : Ue → V, e ∈ ker f, is a home-
omorphism, too. Put B = {V y : y ∈ Y } and A =

{
Ux : x ∈ f−1(y), y ∈ Y

}
. B

is an open covering of Y and A is an open covering of X. Since f is surjective,
each fiber f−1(y) is non-empty set and f−1(y) = (ker f)x, where x ∈ f−1(y)
is an arbitrary point. We claim that (A,B) is an overlay pair for f. Obviously,{
Ux : x ∈ f−1(y)

}
evenly covers V y for each y ∈ Y. It remains to prove that,

whenever V y ∩ V y′ 6= ∅, each xU, x ∈ f−1({y}), intersects exactly one Ux′, x′ ∈
f−1({y′}). Assume Ux, x ∈ f−1({y}), intersects Ux′ and Ux′′, x′, x′′ ∈ f−1(y′).
Then there are u1, u2, u3, u4 ∈ U such that u1x = u2x

′ and u3x = u4x
′′. Since

u−1
2 u1, u

−1
4 u3 ∈ A and f(u−1

2 u1) = f(x′x−1) = f(x′′x−1) = f(u−1
4 u3), it follows

u−1
2 u1 = u−1

4 u3 and consequently x′x−1 = x′′x−1. Hence, x′ = x′′ and Ux intersects
exactly one Ux′. �

In the sequel we consider covering maps f : X → Y over compact connected
groups Y . If the total space X is also connected, we are able to prove the converse
of Theorem 2.2. Recall that Fox has noticed that for overlay maps, connectedness
of the total space X has to be replaced by the indecomposability of the overlay map
f, a property which he calls vertical connectedness of f.

We say that an overlay pair (A,B) for a map f : X → Y is decomposable provided
there exist non-empty disjoint open sets X1, X2, whose union is X, and there exist
non-empty disjoint subsets S1, S2, whose union is S. Moreover, the collections
Ai = (Aσi

B , B ∈ B, σi ∈ Si), i = 1, 2, together with B form overlay pairs (Ai,B) for
the mappings f i = f |Xi : Xi → Y , i = 1, 2. We say that an overlay map f : X → Y
is decomposable provided it admits a decomposable overlay pair (A,B).

Clearly, connectedness of the total space X always implies indecomposability of
the overlay map f : X → Y, but Fox exhibited an example of an indecomposable
overlay map between metric spaces, where the total space is not connected ([2]).
Again the number of sheets was infinite.

In the sequel we need the notion of an ANR-pull-back-expansion of an s-sheeted
overlay map f : X → Y, denoted by E. It consists of an ANR-resolution q =
(qλ : Y → Yλ, λ ∈ Λ) : Y → Y = (Yλ, qλλ′ , Λ) (see [11, Section 5]), of a map
p = (pλ : X → Xλ, λ ∈ Λ) : X → X = (Xλ, pλλ′ , Λ) and of a map f = (fλ : Xλ →



4 KATSUYA EDA AND VLASTA MATIJEVIĆ

Yλ, λ ∈ Λ) : X → Y such that fp = qf and the following diagrams Dλ, λ ∈ Λ, and
Dλλ′ , λ ≤ λ′, are pull-back diagrams.

Xλ
pλ← X

fλ ↓ ↓ f
Yλ ←

qλ

Y

Xλ
pλλ′← Xλ′

fλ ↓ ↓ fλ′

Yλ ←
qλλ′

Yλ′

Furthermore, we require that the maps fλ : Xλ → Yλ, λ ∈ Λ, be s-sheeted covering
maps. If all maps in Dλ and Dλλ′ are pointed maps, we speak of a pointed ANR-
pull-back-expansion E∗ of f.

We say that an s-sheeted overlay map f : X → Y is an inverse limit of an
ANR-pull-back-expansion E if X = lim←−X, Y = lim←−Y and f = lim←−f .

Theorem 2.3. Let Y be a compact connected group with the identity e and let
f : (X, x0) → (Y, e) be a pointed covering map. Then the following claims are
equivalent.
(i) f is a pointed s-sheeted indecomposable overlay map.
(ii) Let (Y, e) be an inverse limit of a pointed inverse system ((Yλ, eλ), qλλ′ , Λ),
where each Yλ is a compact connected ANR. Then f is an inverse limit of a pointed
ANR-pull-back expansion E∗ consisting of pointed s-sheeted covering maps fλ :
(Xλ, xλ)→ (Yλ, eλ), λ ≥ λ0, with the connected total space.
(iii) There exists a multiplication · on X such that (X, ·) is a topological group with
the identity x0 and f is an s-sheeted covering homomorphism. Furthermore, X is
connected.

Proof. (i)⇒ (ii). Let (Y, e) be an inverse limit of a pointed inverse system
((Yλ, eλ), qλλ′ , Λ), where each Yλ is a compact connected ANR. According to [10,
Ch. I, §6.1, Theorem 1] q = (qλ : Y → Yλ, λ ∈ Λ) : (Y, e) → ((Yλ, eλ), qλλ′ ,Λ)
is a pointed ANR-resolution of (Y, e). Take an s-sheeted indecomposable overlay
pair (A,B) for f and apply Lemma 23 and Remark 8 of [11]. We get a pointed
(enriched) pull-back expansion of f, where each fλ : (Xλ, xλ)→ (Yλ, eλ), λ ≥ λ0, is
a pointed s-sheeted covering map with the connected total space Xλ.

(Xλ0 , xλ0)
pλ0λ←− (Xλ, xλ)

pλλ′←− (Xλ′ , xλ′) ← · · · (X,x0)
fλ0 ↓ fλ ↓ fλ′ ↓ f ↓
(Yλ0 , eλ0)

qλ0λ←− (Yλ, eλ)
qλλ′←− (Yλ′ , eλ′) ← · · · (Y, e)

Since Y = lim←−(Yλ, , qλλ′ , λ ≥ λ0), by [11, Lemma 11] it follows X = lim←−X and
f = lim←−f , which proves (ii).
(ii) ⇒ (iii). Since Y is a compact connected group, (Y, e) can be presented as an
inverse limit of a pointed inverse system Y ∗ = ((Yλ, eλ), qλλ′ , Λ), where each Yλ

is a compact connected Lie group with the identity eλ, each bonding map qλλ′ :
Yλ′ → Yλ and each projection qλ : Y → Yλ is an epimorphism of topological groups
(see [1, Lemma 2.12]). Note that each Yλ is an ANR and by (ii) f is an inverse
limit of an ANR-pull-back expansion consisting of pointed s-sheeted covering maps
fλ : (Xλ, xλ) → (Yλ, eλ), λ ≥ λ0, with the connected total space. Moreover, each
Xλ is an ANR, too ([11, Remark 7]). We claim that projections pλ : X → Xλ

are surjections. Take an arbitrary x′
λ ∈ Xλ. Since the projection qλ is surjective,

there is y ∈ Y such that qλ(y) = fλ(x′
λ). Dλ is a pull-back diagram and, according

to [11, Lemma 6], pλ

∣∣f−1(y) : f−1(y) → f−1
λ (qλ(y)) is a bijection. Hence, there
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is x ∈ f−1(y) ⊆ X such that pλ(x) = x′
λ, which proves pλ is surjective. By [13,

Theorem 79], each (Xλ, xλ), λ ≥ λ0, admits a (unique) topological group structure
with the identity xλ and each fλ : (Xλ, xλ)→ (Yλ, eλ), λ ≥ λ0, becomes a covering
homomorphism. Furthermore, each bonding map pλλ′ : (Xλ′ , xλ′)→ (Xλ, xλ), λ′ ≥
λ ≥ λ0, becomes a homomorphism of topological groups ([1, Lemma 2.3]), which
induces a topological group structure with the identity x0 on the inverse limit space
(X, x0) = lim←−((Xλ, xλ), pλλ′ , λ ≥ λ0) and f = lim←−f becomes a homomorphism of
topological groups. The groups Xλ, λ ≥ λ0, and the group X are locally compact.
It remains to prove that X is connected. According to [7, Corollary 7.9], it is

sufficient to prove that X =
∞∪

n=1
Un, for each open neighborhood U of the identity

x0 of X. Let U be an arbitrary open neighborhood of x0. Since X is the inverse
limit of (Xλ, pλλ′ , λ ≥ λ0) there is an index λ ≥ λ0 and an open set Uλ ⊆ Xλ

such that x0 ∈ p−1
λ (Uλ) ⊆ U. Note that Uλ is an open neighborhood of the identity

xλ ∈ Xλ of the connected locally compact group Xλ, which implies Xλ =
∞∪

n=1
(Uλ)n.

Let x ∈ X be an arbitrary point. Then pλ(x) = u1 · · ·un for some u1, . . . , un ∈ Uλ.
The projection pλ is surjective, which implies Uλ = pλ(p−1

λ (Uλ)). Then there are
v1, . . . , vn ∈ p−1

λ (Uλ) such that pλ(vi) = ui for each i = 1, . . . , n. Hence pλ(x) =
u1 · · ·un = pλ(v1 · · · vn), x(v1 · · · vn)−1 ∈ ker pλ ⊆ p−1

λ (Uλ) and we conclude x ∈
p−1

λ (Uλ)v1 · · · vn ⊆ p−1
λ (Uλ)(p−1

λ (Uλ))n ⊆ Un+1.
(iii) ⇒ (i). By Theorem 2.2 f is an overlay map. Since X is connected, f is
indecomposable. �

According to Theorem 2.3 a covering map f : X → Y over a compact connected
group Y is an indecomposable overlay map if and only if the total space X is
connected. So, taking a covering map f : X → Y from a connected space X, we
get the following version of Theorem 2.3.

Theorem 2.4. Let Y be a compact connected group with the identity e, X a con-
nected space and let f : (X,x0) → (Y, e) be a pointed covering map. Then the
following claims are equivalent.
(i) f is a pointed s-sheeted overlay map.
(ii) Let (Y, e) be an inverse limit of a pointed inverse system ((Yλ, eλ), qλλ′ , Λ),
where each Yλ is a compact connected ANR. Then f is an inverse limit of a pointed
ANR-pull-back expansion E∗ consisting of pointed s-sheeted covering maps fλ :
(Xλ, xλ)→ (Yλ, eλ), λ ≥ λ0, with the connected total space.
(iii) There exists a multiplication · on X such that (X, ·) is a topological group with
the identity x0 and f is an s-sheeted covering homomorphism.

Corollary 2.5. Let Y be a compact connected group, X a connected space and
let f : X → Y be a covering map. X admits a topological group structure such
that f is a covering homomorphism if and only if f is an overlay map.

By a solenoid we mean a compact connected 1-dimensional abelian group. It
is known that any solenoid is the inverse limit of finite coverings of circles whose
covering numbers are primes. Precisely, for a solenoid Σ there exists a sequence
P = 〈p0, p1, · · · 〉 of primes such that Σ = lim←−(Sn, gn, n < ω), where Sn = S1 is the
unit circle and gn : S1 → S1, gn(z) = zpn for each n ≥ 0. We say that the sequence
P is related to Σ (or that Σ is generated by the sequence P ) and denote Σ by ΣP .
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S1 p0← S1 p1← S1 ← · · · ΣP

Two sequences P = 〈p0, p1, · · · 〉 and Q = 〈q0, q1, · · · 〉 of primes are said to be
equivalent, written P ∼ Q, provided it is possible to delete a finite number of
terms from each so that every prime occurs the same number of times in each of
the deleted sequences. It is a well-known result that solenoids ΣP and ΣQ are
homeomorphic if and only if P ∼ Q (see [8, §2] or [9, Theorem 17]). We see that,
for any solenoid Σ, the related sequence P is unique up to the equivalence ∼ of
sequences of primes.

Assume that X is a connected space and f : X → Σ is an infinite-sheeted covering
map over a solenoid Σ. Applying Theorem 2.3 we get the following corollary.

Corollary 2.6. Let X be a connected space and let f : X → Σ be an infinite-
sheeted covering map over a solenoid Σ. Then X does not admit a topological
group structure such that f is a covering homomorphism.

Proof. Assume the contrary. Let P = 〈p0, p1, · · · 〉 be the sequence of primes which
is related to Σ and let · be a multiplication on X such that X is a topologi-
cal group with the identity x0 and f : (X,x0) → (ΣP , e) is an infinite-sheeted
covering homomorphism. By Theorem 2.3 (ii) f is an inverse limit of a pointed
ANR-pull-back expansion E∗ consisting of pointed infinite-sheeted covering maps
fn : (Xn, xn) → (S1, 1), n ≥ n0, with the connected total space. Then Hn =
(fn)#(π1(Xn, xn)) = {0} , n ≥ n0, a quotient set π1(S1, 1)�Hn equals Z and a
function rn,n+1 : π1(S1, 1)�Hn+1 → π1(S1, 1)�Hn induced by (qn,n+1)# is given
by rn,n+1(z) = pn · z. Since all Dn,n+1, n ≥ n0, are pull-back diagrams, Lemma 10
of [11] implies that each rn,n+1 is a bijection. Hence, pn has to be 1 for each n ≥ n0

and we get a contradiction. �
Note that Corollary 2.6 implies that the solenoid Σ does not admit an infinite-
sheeted overlay map with the connected total space.

The next lemma asserts that we may confine the sequences of primes related
to the construction of solenoids to those with some additional divisibility property
of their terms. This lemma will be used in the proof of Theorem 3.1 in the next
section.

Lemma 2.7. For any solenoid Σ there exists a sequence P = 〈p0, p1, · · · 〉 of primes
such that ΣP is homeomorphic to Σ and pn is prime to Σn−1

i=0 pi +1 for every n ≥ 1.

Proof. Let Q = 〈q0, q1, · · · 〉 be the sequence of primes which is related to Σ. We
divide our proof into two cases.

Case 1: Infinitely many different primes appear in the sequence Q.
By induction on n ≥ 0, we will define a permutation τ : N∪{0} → N∪{0} such that
each qτ(n), n ≥ 1, is prime to Σn−1

k=0qτ(k) + 1. Then, the sequence P = 〈p0, p1, · · · 〉,
where each pn = qτ(n), has both required properties. Let τ(0) = 0. Suppose that we
have defined τ(n) so that the condition is satisfied. Let i be the least positive integer
such that i does not belong to the image of τ . If qi does not divide Σn

i=0qτ(i) + 1,
then let τ(n + 1) = i. Otherwise, we have qj such that j does not belong to the
image of τ and qj > Σn

k=0qτ(k) + 1. We let τ(n + 1) = j. Note that in both cases
qτ(n+1) is prime to Σn

k=0qτ(k) + 1 and the inductive step is done. We claim that
τ is a bijection. By construction τ is injective. Assume that τ is not surjective.
Then we have the least positive integer m which does not belong to the image of
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τ . Choose n so that {0, · · · ,m − 1} ⊆ {τ(i) : i < n}. Since m 6= τ(n), qm divides
Σn−1

i=0 qτ(i) + 1, but qτ(n) does not. Hence, qm does not divide Σn
i=0qτ(i) + 1 and

τ(n + 1) should be m, which is a contradiction.
Case 2: Only finitely many different primes appear in the sequence Q.

First we delete in Q all those primes which appear in the sequence only finitely
many times. We get a deleted sequence Q′ and the solenoid ΣQ′ is homeomorphic
to Σ. Note that each prime in the sequence Q′ appears infinitely many times. Then,
we define a permutation τ related to Q′ in the similar way as above. Let τ(0) = 0.
Suppose that we have defined τ(n) so that the condition is satisfied. Let i be the
least positive integer such that i does not belong to the image of τ . If qi does not
divide Σn

k=0qτ(k) + 1, then let τ(n + 1) = i. Otherwise, since qτ(n) does not divide
Σn

k=0qτ(k) +1 and qτ(n) appears infinitely many times in Q′, we can choose τ(n+1)
distinct from τ(0), · · · , τ(n) such that qτ(n+1) = qτ(n). Then we can show that
pn = qτ(n) are the desired ones similarly as in the first case. �

Remark 2.8. Since solenoids are compact topological abelian groups, discrete abelian
groups correspond to them by the Pontryagin duality. Solenoids are one-dimensional
and connected, hence their Pontryagin duals are isomorphic to subgroups of the ra-
tional group Q. The subgroups of Q are classified by types [4, p.110] and the
classification is essentially the same as that given preceding to Lemma 2.7.

3. Infinite-sheeted covering maps over the solenoids ΣP

In this section we prove the next main theorem.

Theorem 3.1. For each solenoid Σ there exists an infinite-sheeted covering map
over Σ with the connected total space.

Together with Corollary 2.6 we get the following negative answer to the question
stated in the introduction.

Corollary 3.2. For any solenoid there exists a connected covering space which
does not admit a topological group structure so that the covering map becomes a
homomorphism between topological groups.

Before proving Theorem 3.1, we give another description of Σ more suitable for
our purpose. Let P be a sequence of primes which is related to Σ. We define a
P -adic group JP and a quotient space JP × [0, 2π]/ ∼ which is homeomorphic to
ΣP . For a nonnegative integer n, i.e. n < ω, let Cn = Z/(Πn

i=0pi)Z and define
hn : Cn+1 → Cn by: hn([u]Πn+1

i=0 pi
) = [u]Πn

i=0pi for u ∈ Z. Then we have an inverse
sequence (Cn, hn : n < ω) of discrete compact abelian groups. Let JP be the
inverse limit lim←−(Cn, hn : n < ω). Recall that elements of JP are all sequences
(un : n < ω) ∈

∏
n<ω

Cn such that hn(un+1) = un for n < ω. Then JP is a compact,

totally disconnected topological abelian group, where the group operation is the
coordinatewise addition and the topology is induced from the product topology.
The canonical projection from JP to Cn is denoted by ρn, i.e. ρn((un : n < ω)) =
un. The notation JP comes from the p-adic integer group Jp for a prime p. When
our notation starts to be rather complicated, we recommend the reader to replace
pn by the constant prime p and the situation will be clearer.

Let Seq(P ) be the set of finite sequence s = 〈s0, · · · , sn−1〉 such that 0 ≤ si < pi

for 0 ≤ i ≤ n − 1 and let lh(s) be the length of s, i.e. n. We use ∗ for the
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concatenation of finite sequences. In particular, we define 0n, ln ∈ Seq(P ) as
follows: lh(0n) = lh(ln) = n and 0n,i = 0 and ln,i = pi − 1 for 0 ≤ i < n. Since
each element of Cn corresponds to a finite sequence s ∈ Seq(P ) with the length
n+1, we identify them. For instance s+1 and s−1 are elements of Cn and also the
corresponding finite sequences. Since hn([1]Πn+1

i=0 pi
) = [1]Πn

i=0pi for every n, we use
the symbol 1 for the elements in JP and Cn. For s ∈ Seq(P ) with lh(s) = n + 1,
we define Us = {u ∈ JP : ρn(u) = s}. Note that Us are basic open sets of JP .

Denote by Xn = Cn × [0, 2π]/ ∼n the quotient space obtained by identifications
(u, 0) ∼n (u−1, 2π) for u ∈ Cn. Define hn : Xn+1 → Xn by hn((u, θ)) = (hn(u), θ),
for (u, θ) ∈ Xn+1. Since (hn(u), 0) ∼n (hn(u) − 1, 2π) and hn(u) + 1 = hn(u) +
hn(1) = hn(u + 1), it follows that (hn(u), 0) ∼n (hn(u − 1), 2π) and consequently
that hn is well-defined. Since each Xn is homeomorphic to the unit circle S1 and
hn is a pn+1-sheeted covering map, lim←−(Xn, hn : n < ω) is homeomorphic to ΣP .

Define (u, 0) ∼ (u − 1, 2π) for u ∈ JP . Then (u, 0) ∼ (u − 1, 2π) if and only if
(ρn(u), 0) ∼n (ρn(u)− 1, 2π) for every n. Hence the quotient space JP × [0, 2π]/ ∼
is homeomorphic to lim←−(Xn, hn : n < ω) and also to ΣP .

Proof of Theorem 3.1. We shall define a total space XP obtained as a quotient
space by certain identifications on the countable disjoint union

⊔∞
i=1 Zi, where each

Zi is a copy of JP × [0, 2π]. Then, we have a map σ : XP → ΣP induced from a
natural map σ :

⊔∞
i=1 Zi → JP × [0, 2π], which is an infinite-sheeted covering map.

Then, we prove the connectivity of XP , where the property of a sequence of primes
in Lemma 2.7 actually concerns.

An element of Zi which corresponds to (u, θ) ∈ JP × [0, 2π] is denoted by (u, θ)i.
We define an identification ≈ on

⊔∞
i=1 Zi as follows.

To simplify index sets, let I0 = 0 and In = Σn−1
i=0 pi for n ≥ 1. If k is a positive integer

such that In+1 ≤ k ≤ In+1, then 0 ≤ In+1−k ≤ pn−1 and ln∗〈In+1−k〉 ∈ Seq(P ).
In particular, l0 ∗ 〈I1 − k〉 = 〈p0 − k〉 .

First, for each k ≥ 1 and n ≥ 0 such that In + 1 ≤ k ≤ In+1, we put (u, 2π)k ≈
(u+1, 0)k+1 and (u, 2π)k+1 ≈ (u+1, 0)k for u ∈ Uln∗〈In+1−k〉. Next, in case neither
(u, 2π)j ≈ (u + 1, 0)j+1 nor (u, 2π)j ≈ (u + 1, 0)j−1 holds, we put (u, 2π)j ≈
(u + 1, 0)j .

We remark the following. The identification rule on the first p0 copies Z1, . . . , Zp0

depends on sequences of the length 1, on the next p1 copies Zp0+1, . . . , Zp0+p1 on
sequences of the length 2 and so on. Further, for each (u, 0)j there exists a unique
k such that (u, 0)j ≈ (u− 1, 2π)k and k = j − 1, j or j + 1.

Before proceeding, let us explain our construction geometrically. We take in-
finitely many copies of ΣP , say Σi

P . We cut a part of the first copy Σ1
P and the

corresponding part of the second copy Σ2
P and switch the connections. Except the

first copy Σ1
P we cut two parts of each Σi

P , and by switchings one is connected to
Σi−1

P and the other is connected to Σi+1
P . The rule of these cuttings is given in the

definition of ≈. If In + 2 ≤ i ≤ In+1, the sizes of the two parts are the same, but,
otherwise, i.e. if i = In + 1, the sizes of the cutting parts are different. Since each
Zi is a copy of JP ×[0, 2π], we have a natural map σ :

⊔∞
i=1 Zi → JP ×[0, 2π], which

is obviously an infinite sheeted cover over JP × [0, 2π]. Let XP =
⊔∞

i=1 Zi/ ≈ .
Then, via the quotients by ≈ and ∼ we get the induced map σ : XP → ΣP .

We claim that σ evenly covers ΣP . Since JP × (0, 2π) = JP × (0, 2π)/ ∼, there
is no difficulty for this case. We need to examine JP × ([0, π) ∪ (π, 2π])/ ∼.
To analyze σ−1(JP × ([0, π)∪ (π, 2π])/ ∼), we consider σ−1(JP × ([0, π)∪ (π, 2π])).
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First let A1 be the set

(U〈p0−1〉 × (π, 2π])2 ∪ ((JP \ U〈p0−1〉)× (π, 2π])1 ∪ (JP × [0, π))1.

For In + 2 ≤ k ≤ In+1, let Ak be the set

(Uln∗〈In+1−k〉 × (π, 2π])k+1 ∪ (Uln∗〈In+1−k+1〉 × (π, 2π])k−1

∪ ((JP \ (Uln∗〈In+1−k〉 ∪ Uln∗〈In+1−k+1〉))× (π, 2π])k

∪ (JP × [0, π))k.

For k = In + 1 (n ≥ 1), let Ak be

(Uln∗〈pn−1〉 × (π, 2π])k+1 ∪ (Uln−1∗〈0〉 × (π, 2π])k−1

∪ ((JP \ (Uln∗〈pn−1〉 ∪ Uln−1∗〈0〉))× (π, 2π])k

∪ (JP × [0, π))k.

We remark that the restriction of σ to Ak/ ≈ is a homeomorphism onto JP ×
([0, π) ∪ (π, 2π])/ ∼. Since σ−1(JP × [0, π) ∪ (π, 2π]) is the disjoint union of Ak’s,
σ evenly covers (JP × [0, π) ∪ (π, 2π])/ ∼ and we conclude that is σ is an infinite
sheeted covering map.

Showing the connectivity of XP is a delicate and long part of this proof. First
we define some connection between subsets (Us × {0})m of

⊔∞
i=1 Zi.

Let m : s denote a subset (Us × {0})m. We call n : t a successor of m : s, if
t = s + 1 and, for each u ∈ Us, (u, 2π)m ≈ (u + 1, 0)n. Note that m : s may not
have a successor, but there is at most one successor. However, if the length of s is
larger than m, m : s has its successor. Here we give some examples. The successor
of 1 : 〈p0− 1, 0〉 is 2 : 〈0, 1〉, the successor of 2 : 〈p0− 1, 0〉 is 1 : 〈0, 1〉, the successor
of p0 + 1 : 〈p0 − 1, p1 − 1, 0〉 is p0 + 2 : 〈0, 0, 1〉, the successor of p0 : 〈p0 − 1, 0, 1〉 is
p0 : 〈0, 1, 1〉. But, p0 + 1 : 〈p0 − 1〉 has no successor.

If there exist ni : ti (0 ≤ i ≤ k) such that m = n0 and s = t0, n = nk and t = tk,
and each ni+1 : ti+1 is a successor of ni : ti, we call n : t the k-th successor of m : s
and the related chain (ni : ti | 0 ≤ i ≤ k) a path. In this terminology a successor
of m : s is the first successor of m : s. The subset m : s is a starting 0-position and
n : t is a final k-position of the path (ni : ti | 0 ≤ i ≤ k). Since points in ni : ti are
connected by paths in XP to points in ni+1 : ti+1, points in m : s are connected by
paths in XP to points in n : t. Taking the successor of a position m : s we call a
step. Hence, starting from m : s, after k steps we reach the k-th successor of m : s.
An example of a path with the starting position p0 +1 : 〈0, 0〉 and the final position
1 : 〈1, 1〉 is the following: p0 +1 : 〈0, 0〉 , p0 : 〈1, 0〉 , p0−1 : 〈2, 0〉 , . . . , 2 : 〈p0 − 1, 0〉 ,
1 : 〈0, 1〉 , 1 : 〈1, 1〉 .

It is possible to give a certain geometrical meaning to a successor and a step.
For this purpose we use points in JP × [0, 2π] and

⊔∞
i=1 Zi to express points in ΣP

and XP respectively. One round in ΣP corresponds to +1 or −1 in JP . We fix a
direction such that a clockwise round corresponds to +1. Now we consider points
(u, 0) ∈ ΣP and (u, 0)m ∈ XP . Since σ is a covering map, a clockwise round from
(u, 0) to (u + 1, 0) by a path is lifted to a path from (u, 0)m to (u + 1, 0)k for some
k. This k may be m−1, m or m+1. If v ∈ Us and a clockwise round from (v, 0) to
(v + 1, 0) is lifted to the path from (v, 0)m to (v + 1, 0)k for every v ∈ Us, k : s + 1
is the successor of m : s. This is a step from m : s to k : s+1 and clockwise rounds
correspond to steps.
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Claim. Let P be a sequence of primes which satisfies the property
in Lemma 2.7. Then, for each n ≥ 0 the following hold.
(∗n) Σn−1

i=0 pi + 2 : 0n+1 is the (Πn
i=0pi)(Σn−1

i=0 pi + 1)-th successor
of Σn−1

i=0 pi + 1 : 0n+1 and k : x appears on that path for any
k ≤ Σn−1

i=0 pi + 1 and any x ∈ Seq(P ) having lh(x) = n + 1.

We prove the claim by induction on n ≥ 0. First we show (∗0). We have a path
1 : 〈0〉, 1 : 〈1〉, 1 : 〈2〉, . . . , 1 : 〈p0 − 1〉, 2 : 〈0〉. Hence, 2 : 〈0〉 is the p0-th successor
of 1 : 〈0〉 and for each x, 0 ≤ x ≤ p0− 1, 1 : 〈x〉 appears on that path. We conclude
that (∗0) is proven.

Now suppose that (∗n) holds. The 0-th position is Σn
i=0pi + 1 : 0n+2. The

Πn−1
i=0 pi − 1-th successor is Σn

i=0pi + 1 : (ln ∗ 〈0, 0〉) and its successor is Σn
i=0pi :

(0n ∗ 〈1, 0〉). For each Σn−1
i=0 pi + 2 ≤ k ≤ Σn

i=0pi + 1 we count Πn−1
i=0 pi-steps and

reach Σn−1
i=0 pi + 1 : (0n ∗ 〈0, 1〉) as the pn ·Πn−1

i=0 pi-th successor. Then, by induction
hypothesis, we have Σn−1

i=0 pi+2 : 0n+1∗〈[2]pn+1〉 as the pnΠn−1
i=0 pi+Πn

i=0pi(Σn−1
i=0 pi+

1)-th successor.
Then, we count (pn − 1)Πn−1

i=0 pi-steps for each Σn−1
i=0 pi + 2 ≤ k ≤ Σn

i=0pi and we
have Σn

i=0pi + 1 : (0n ∗ 〈1, a− 1〉) as the S-th successor, where

S = (pn − 1)(pn − 1)Πn−1
i=0 pi + pnΠn−1

i=0 pi + (Πn
i=0pi)(Σn−1

i=0 pi + 1)

= −(pn − 1)Πn−1
i=0 pi + (Πn

i=0pi)(Σn
i=0pi + 1)

and a = [Σn
i=0pi + 1]pn+1 .

Hence we have Σn
i=0pi + 1 : 0n ∗ 〈0, a〉 as the (pn − 1)Πn−1

i=0 pi-th successor of
Σn

i=0pi + 1 : 0n ∗ 〈1, 0〉. Hence Σn
i=0pi + 1 : 0n ∗ 〈0, a〉 is the Πn

i=0pi(Σn
i=0pi + 1)-th

successor of Σn
i=0pi + 1 : 0n+2.

By our assumption on P we have 0 < a < pn+1. We remark that n + 1-digit
varies, where the i-digit of 〈s0, · · · , sn+1〉 is si, before we reach Σn

i=0pi+1 : 0n∗〈1, a〉,
but the n + 1-digit possibly effects successors on the path only when we are in
Σn

i=0pi + 1 : s for some s.
Then we continue similarly and as the 2Πn

i=0pi(Σn
i=0pi + 1)-th successor we

have Σn
i=0pi + 1 : 0n ∗ 〈0, [2a]pn+1〉. Since 0 < a < pn+1, for 0 < k < pn+1 we

have [ka]pn+1 6= 0 and certainly have [pn+1a]pn+1 = 0. This means that as the
pn+1Πn

i=0pi(Σn
i=0pi + 1) − 1-th successor we have Σn

i=0pi + 1 : ln+2 and as the
pn+1Πn

i=0pi(Σn
i=0pi + 1)-th successor we have Σn

i=0pi + 2 : 0n+2.
Since the successor is determined by a position and the operation of taking the

successor is invertible and, in addition, we have counted Πn+1
i=0 pi(Σn

i=0pi + 1)-steps
and have the new position Σn

i=0pi + 2 : 0n+2, every k : x appears on this way for
k ≤ Σn

i=0pi + 1 and x ∈ Seq(P ) with lh(x) = n + 2. We have shown (∗n) and have
proved the claim.

Finally we show the connectivity of XP . Without loss of generality, we may
assume that P satisfies the property in Lemma 2.7. Assume that there is a non-
trivial clopen set W of XP . Then we have a basic set (Us0 × {0})n0 in W and
another basic set (Us1 × {0})n1 in its complement XP �W . Take a sufficient large
n such that lh(s0), lh(s1) ≤ n + 1 and n0, n1 ≤ Σn−1

i=0 pi + 1 and extend s0 and s1 to
sequences s∗0 and s∗1 having the length lh(s∗0) = lh(s∗1) = n + 1. Then (∗n) implies
the existence of a path between n0 : s∗0 and n1 : s∗1, which means that there is an
arc in XP connecting a point in (Us0 ×{0})n0 to a point in (Us1 ×{0})n1 . Now we
have a contradiction and have proved Theorem 3.1.
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Remark 3.3. At the end, let us remark that every half line contained in a solenoid
ΣP is dense in ΣP , but this does not hold for XP . We show this using the proof
of (∗n). Let u ∈ JP be the element defined by ρn(u) = Σn

i=1Π
i−1
j=0pj . Define sn+1

to be the first position of the form 1 : sn+1 starting from Σn−1
i=0 pi + 1 : 0n+1. Then,

by (∗i) for 0 ≤ i ≤ n we have sn+1,i = 1 for i ≥ 1 and sn+1,0 = 0 and consequently
have u ∈

∩∞
n=0 Usn+1 . Considering the half line from (u, 0) tracing back steps, we

see that this half line intersects with (U0n+1)
Σn

i=0pi , but does not intersect with
(U〈1〉)1. On the other hand every line in XP is dense in XP as in the case of a
solenoid ΣP . To see this, since every line in XP contains a point (u, 0)i0 , we fix
such a point. Every open set of XP contains a subset of the form (Us × (α, β))j0 .
By extending s we may assume i0, j0 ≤ Σn−1

i=0 pi+1 for n+1 = lh(s). Applying (∗n),
we can see that the line containing (u, 0)i0 intersects with (U0n+1 × {0})Σ

n−1
i=0 pi+1

and consequently intersects with (Us × {0})j0 and (Us × (α, β))j0 .
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