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Some notions in asymptotic phenomenons

1. Asymptotic cones (M. Gromov)
reformulated by van den Dries and Wilkie

2. Toropical geometry (O. Viro)

3. Ultra-discrete analysis (D. Takahashi)

4. A. V. Maslov correspondence
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Z for R

Let ω be a fixed hyperfinite natural number and let ε = 1/ω.

#R = {x ∈ ∗R | there exists n ∈ N such that |x| < nω},
#Z = #R ∩ ∗Z.

For a metric space (X, d) choose x0 ∈ X or x0 ∈ ∗X

#X = {x ∈ ∗X | for some n ∈ N, d(x0, x) ≤ nω}}.

For x, y ∈ ∗X

x ∼# y ↔ for all n ∈ N, d(x, y) ≤ ω/n.

For x, y ∈ #R, we use | | as metric and use ∼#.

Then, for x, y ∈ ∗X, εd(x, y) ∼ 0 and x ∼# y are
equivalent and d(x, y) ∈ #R.
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Asymptotic cone
This set of equivalence classes #X/ ∼# is due to M.
Gromov and called an asymptotic cone, and expressed as
(C∞X, d#). Our construction is seemingly different from a
well-known one, but they are actually the same.

Theorem (M. Gromov): For x, y ∈ #X let

d#([x], [y]) = st(εd(x, y)).

Then #X/ ∼# is a complete metric space under d#.

proof. It is easy to see that d# is a metric.
To show the completeness, let ([xn] : n ∈ N) be a Cauchy
sequence in C∞X, i.e. particularly let

d#([xm], [xn]) < 1/m (m ≤ n).

We want to show the existence of a convergent point
assuming

d(xm, xn) < ω/m (m ≤ n)

holds, which follows from the ω1-saturatedness.
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Discete and continuous

Next we investigate #R under the reflection of (R,+, ·,≤).
It is easy to see that #R and #Z are subgroups of ∗R under
the operation +.
But, since ω2 /∈ #R, #R is not closed under the
multiplication.
Let

x ·ε y = εxy.

Then (#R,+, ·ε) is an associative ring. For n-variable real
function f , let

fω(u1, · · · , un) = ωf(εu1, · · · , εun).

In the following we define in the form for one variable
functions, but the n-variable case is similar.
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If f is a totally defined or bounded real continuous function,
R is closed under f and hence #R is closed under fω.

Theorem:
If f is a totally defined or bounded real continuous function,
then for r ∈ R we have

f(r) = st(εfω(⌊ωr⌋))
= st(ε⌊fω(⌊ωr⌋)⌋).

This theorem implies that a totally defined or bounded real
continuous function corresponds to a function from #Z to
#Z which is in the non-standard universe, i.e. so called an
internal function.



Differences and differentials

Therem: If a real function f is differentiable at r ∈ R,

f ′(r) = st(fω(ωr + 1) − fω(ωr))

= st(fω(⌊ωr⌋ + 1) − fω(⌊ωr⌋)).

Proof. Since

fω(ωr + 1) = ωf(ε(ωr + 1)) = ωf(r + ε),

by the standard argument of non-standard analysis we have

f ′(r) = st(
f(r + ε) − f(r)

ε
)

= st(ω(f(r + ε) − f(r)))

= st(fω(ωr + 1) − fω(ωr)).
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Proof continued
Next let 0 ≤ a < 1 be such that ⌊ωr⌋ = ωr − a. In case
a = 0 the conclusion is obvious and we assume a > 0. Since

fω(⌊ωr⌋ + 1) = ωf(ε(ωr − a + 1)) = ωf(r + (1 − a)ε)

fω(⌊ωr⌋) = ωf(r + (−a)ε),

we have

fω(⌊ωr⌋ + 1) − fω(⌊ωr⌋)
= ω(f(r + (1 − a)ε) − f(r) − (f(r + (−a)ε) − f(r)).

Then, the standard part of the left term is equal to

= st( (1 − a)
f(r + (1 − a)ε) − f(r)

(1 − a)ε

+a
f(r + (−a)ε) − f(r)

(−a)ε
)

= st(1 − a)f ′(r) + st(a)f ′(r)

= f ′(r).
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According this theorem we see the relationship between
differences and differentials is not only in analogy, but is in a
logical relationship with formal descriptions.
A part of the following is a colaboration with Shigeaki
Nagamachi of Tokushima University.
As well-known, solutions of constant coefficient linear
differece equations and constant coefficient linear differential
equations are given by roots of their characteristic equations.
A constant coefficient linear differece equation

n∑
i=0

aif(x + i) = 0

and a constant coefficient linear differential equation
n∑

i=0

aif
(i)(x) = 0

have the same characteristic equation
n∑

i=0

aix
i = 0.
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Let ρ be a root of this equation. Then ρx is a solution of the
difference equation and eρx is a solution of the differential
equation.
Here is a question why Napier’s constant e appears and how
the solutions are related.
We’ll answer these using our setting.
First, we express i-th differential function f (i)(x) by using
fω(x).
For x ∈ R

f (i)(x) ∼ ωi−1
i∑

j=0

iCj(−1)i−jfω(ωx + j)

holds.
Proof can be done by rather straight-forward induction.
Since

f (0)(x) = f(x) = εfω(ωx) = ω−1
0C0fω(ωx),

we have the case i = 0.
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Rewriting

Since by induction hypothesis

f (i)(x + ε) ∼ ωi−1
i∑

j=0

iCj(−1)i−jfω(ω(x + ε) + j)

∼ ωi−1
i+1∑
j=1

iCj−1(−1)i+1−jfω(ωx + j)

∼ ωi−1(fω(ωx + i + 1)

+

i∑
j=1

iCj−1(−1)i+1−jfω(ωx + j)),



Rewriting continued

we have

f (i+1)(x) ∼ (f (i)(x + ε) − f (i)(x))/ε

∼ ωi(fω(ωx + i + 1)

+
i∑

j=1

iCj−1(−1)i+1−jfω(ωx + j)

+
i∑

j=1

iCj(−1)i+1−jfω(ωx + j) + (−1)i+1fω(ωx))

∼ ωi
i+1∑
j=0

i+1Cj(−1)i+1−jfω(ωx + j).



Consider a constant coefficient linear differential equation

n∑
i=0

aif
(i)(x) = 0,

(where an = 1). Now we have

n∑
i=0

aiω
i−1

i∑
j=0

iCj(−1)i−jfω(ωx + j) ∼ 0.

We try to find g such that

f(x) = st(εg(⌊ωx⌋))

for x ∈ R and

n∑
i=0

aiω
i−1

i∑
j=0

iCj(−1)i−jg(⌊ωx⌋ + j) ∼ 0.
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Suppose the factorization of the characteristic equation of a
given differential equation is

n∏
i=0

(x − ρi) =

n∑
i=0

aix
i = 0.

　
According to the preceding transformation of a differential
equation to a difference equation we have
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i=0

aiω
i−1

i∑
j=0

iCj(−1)i−jg(x + j) = 0.

The characteristic equation of this difference equation is

0 =
n∑

i=0

aiω
i−1

i∑
j=0

iCj(−1)i−jXj

=

n∑
i=0

aiω
i−1(X − 1)i
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the last term
∑n

i=0 aiω
i−1(X − 1)i is equal to

ε

n∑
i=0

aiω
i(X − 1)i

and we have

0 =

n∑
i=0

ai(ω(X − 1))i =

n∏
i=0

(ω(X − 1) − ρi)

= ωn+1
n∏

i=0

(X − (1 + ερi))

Finally we have

n∏
i=0

(X − (1 + ερi)) = 0.



the last term
∑n

i=0 aiω
i−1(X − 1)i is equal to

ε

n∑
i=0

aiω
i(X − 1)i

and we have

0 =

n∑
i=0

ai(ω(X − 1))i =

n∏
i=0

(ω(X − 1) − ρi)

= ωn+1
n∏

i=0

(X − (1 + ερi))

Finally we have

n∏
i=0

(X − (1 + ερi)) = 0.



That is, a root of this characteristic equation is 1 + ερi. For
instance, when 1 + ερ is an m-multiple root, as well-known,
the solution is given as

m−1∑
k=0

Ckx
k(1 + ερ)x.

Therefore, if we put

g(x) =

m−1∑
k=0

Ckx
k(1 + ερ)x,

we have
n∑

i=0

aiω
i−1

i∑
j=0

iCj(−1)i−jg(⌊ωx⌋ + j) = 0.

Using
(1 + ερ)ωx ∼ (eρ)x = eρx,

for Ck = εk−1ck (ck ∈ R) we check

f(x) = st(εg(⌊ωx⌋)).
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for Ck = εk−1ck (ck ∈ R) we check

f(x) = st(εg(⌊ωx⌋)).



Finish

The last term will be really a well-known solution of the
original constant coefficient linear differential equation. It
goes

|(ωx)m − ⌊ωx⌋m| = |ωx− ⌊ωx⌋|(Σm−1
k=0 (ωx)m−1−k⌊ωx⌋k)

and
ε⌊ωx⌋ ∼ x, 0 ≤ |ωx − ⌊ωx⌋| < 1.

By induction we have

εm(ωx)m ∼ εm⌊ωx⌋m.

Then

(1 + ερ)⌊ωx⌋ ∼ (1 + ερ)ωx ∼ (eρ)x = eρx

and hence
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st(εg(⌊ωx⌋)) =

m−1∑
k=0

ck st(εk⌊ωx⌋k(1 + ερ)⌊ωx⌋)

=

m−1∑
k=0

ckx
keρx.



Questions

What discrete subgroups of a Lie group make the Lie group
as their asymptotic ones?

Y. de Cornulier and P. de la Harpe, Metric geometry of
locally compact groups, 2014.
Asymptotic cones of Lie groups and cone equivalences, Y. de
Cornulier, 2009.

What discrete structures of discrete subgroups reflects the
differential structures of the Lie groups?

Can we say more on relationship between the structures on
discrete subgroups and those on the Lie groups?
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