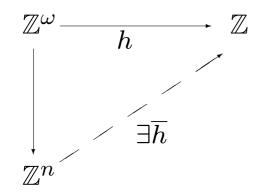
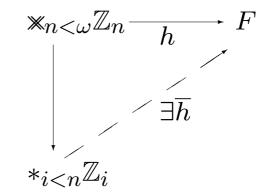
Specker phenomenon in the uncountable case

By Katsuya Eda (Waseda University)

E. Specker (1950) Given homomorphism $h: \mathbb{Z}^{\omega} \to \mathbb{Z}$



G. Higman (1952) Given homomorphism $h: *_{n < \omega} \mathbb{Z}_n \to F$

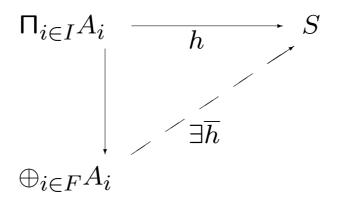


$$st_{n<\omega}\mathbb{Z}_n$$
 may be $\lim_{\leftarrow}(st_{i< n}\mathbb{Z}_i, p_{mn}: m \leq n < \omega).$

1

Uncountable, commutative case J. Łoś, E. C. Zeeman (1955)

Let S be a slender abelian group and $h: \prod_{i\in I} A_i \to S$.



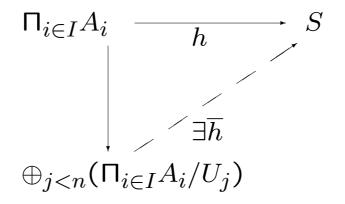
F is a finite subset of I, where the cardinality of I is less than the least measurable cardinal.

Uncountable, commutative case (continued) K. E. (1982)

Let S be a slender abelian group and

 $h: \Pi_{i\in I}A_i \to S$ be a homomorphism.

Then there exist countably complete ultrafilters U_i :



Why does the least measurable cardinal appear?

Let $h : C(X, A) \to B$, where h is a homomorphism A and B are abelian groups. A subset S is a support of h, if f|S = 0 implies h(f) = 0. In many cases supports form a filter. Can we have the minimal support? If X is compact, it is easy to have it. In the case of abelian groups we have the minimal support in the following case. X is \mathbb{N} -comact, i.e. X is a closed subspace of a direct product of the discrete space \mathbb{N} and B is a slender group.

A discrete space X is \mathbb{N} -comact, if and only if the cardinality of X is less than the least measurable cardinals.

Unrestricted free product $\lim_{\leftarrow} (*_{i \in F} G_i, p_{EF} : E \Subset F \subset I)$

Complete free product (= free complete product) $\ll_{i \in I} G_i$ consisting elements expressed by words.

Assume $G_i \cap G_j = \{e\}$ for $i \neq j$. A word is $W : \overline{W} \to \bigcup_{i \in I} G_i$, where \overline{W} is linearly ordered and $\{\alpha \in \overline{W} : W(\alpha) \in G_i\}$ is finite for each $i \in I$.

(Difference) Let $x_n = \delta_0 \delta_1 \delta_0 \cdots \delta_0^{-i} \delta_i \delta_0^i \cdots \delta_0^{-n} \delta_n \delta_0^n$ for $1 \leq n < \omega$. Then $p_{nn+1}(x_n) = x_{n-1}$ and $(x_n : n < \omega) \in \lim_{\leftarrow} (*_{i=0}^m \mathbb{Z}_i : m < \omega)$, but $(x_n : n < \omega) \notin *_{n < \omega} *_{i=0}^n \mathbb{Z}_i$.

IMPORTANT ASPECT: There exists a unique reduced word of each word.

Difficulty involving non-commutativity:

For disjoint index sets I and J,

 $\Pi_{i \in I \cup J} A_i \simeq \Pi_{i \in I} A_i \oplus \Pi_{i \in J} A_i, \quad \text{but}$

 $\lim_{\leftarrow} (*_{i \in F} G_i, p_{EF} : E \Subset F \subset I \cup J)$

 $\not\simeq \lim_{\leftarrow} (*_{i \in F} G_i, p_{EF} : E \Subset F \subset I) * \lim_{\leftarrow} (*_{i \in F} G_i, p_{EF} : E \Subset F \subset J),$

nor

 $\mathfrak{X}_{i\in I\cup J}G_i \quad \not\simeq \quad \mathfrak{X}_{i\in I}G_i * \mathfrak{X}_{i\in J}G_i.$

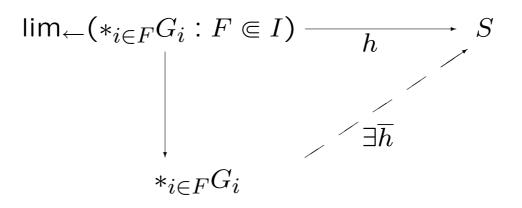
Uncountable, non-commutative case S. Shelah - K. E. (2002)

Let *S* be an n-slender group and $h: \lim_{\leftarrow} (*_{i \in F}G_i, p_{EF} : E \subset F \Subset I) \to S$ be a homomorphism. For $X \subseteq I$, let $p_X : \lim_{\leftarrow} (*_{i \in F}G_i, p_{EF} : E \Subset F \subset I) \to$ $\lim_{\leftarrow} (*_{i \in F}G_i, p_{EF} : E \subset F \Subset X)$ be the canonical projection.

Then there exist countably complete ultrafilters U_j such that $h = h \circ p_{X_1 \cup \dots \cup X_n}$ for every $X_j \in U_j$.

(Continued)

Consequently if the cardinality of I is less than the least measurable cardinal, there exists a finite subset F of I such that



There are questions about non-commutative ultraproducts $*_{j < n} \lim_{\leftarrow} (*_{i \in F} G_i : F \subseteq I)/U.$ What are the structures when G_i s are copies of \mathbb{Z} .

Failure in Uncountable, non-commutative case S. Shelah - L. Struengmann (2001)

If the index set I is uncountable, there exists a homomorphism $h : \underset{i \in I}{\mathbb{Z}}_i \to \mathbb{Z}$ such that $h(\underset{i \in I}{\mathbb{Z}}_i) = \{e\}$ but h is non-trivial. A tail T of a word W is a non-empty word such that $W \equiv W_0 T$ for some word W_0 . Two words V, W are tail-equivalent, if V and W have the same tail. Let σ be the tail-equivalence class containing a word W of uncountable cofinality. We can define a homomorphism h_{σ} to \mathbb{Z} according to the appearances of tails of a reduced word W and heads of W^- . A group S is n-slender, if for an arbitrary homomorphism h: $\underset{n<\omega}{\mathbb{Z}_n} \to S$ the Higman diagram holds, i.e. the non-commutative Specker phenomenon holds.

Description of homomorphisms $h: \mathfrak{K}_{i \in I}G_i \to S.$

For a word $W \in W(G_i : i \in I)$, define supp(W) = {i \in I : W(α) \in G_i for some α }. A family of words \mathcal{F} is *overlapping*, if any infinite subfamily of \mathcal{F} has an infinite subfamily \mathcal{G} such that \bigcap {supp(W) : W $\in \mathcal{G}$ } is non-empty. A family of uncountable cofinal types of reduced words is overlapping, if each family of words consisting of all the representatives is overlapping.

(Claim1): Let W be a reduced word of uncountable cofinality. Then there exists a tail T of W such that for each tail T' of Th(T) = h(T'). Otherwise, we have subwords V_n such that $T \equiv V_0V_1 \cdots V_n \cdots T_0$ and $h(V_n)$ s are non-trivial.

We have a homomorphism $\varphi : \ast_{n < \omega} \mathbb{Z}_n \to \ast_{i \in I} G_i$ such that $\varphi(\delta_n) = V_n$ and $h \circ \varphi(\delta_n) \neq e$, which contradicts the n-slenderness of S.

For h let \mathcal{T}_h be the set of all tail-equivalence classes τ of reduced words of uncoutable cofinalities such that h(T) is non-trivial for a sufficiently small tail $T \in \tau$.

(Claim1): There exist only finitely many i s such that $h | G_i$ is non-trivial.

(Claim2): T_h is an overlapping family.

For a tail-equivalence class $\sigma \sigma^-$ denotes the head equivalent class. For an overlapping family \mathcal{T} of tail-equivalence classes and $f: \mathcal{T} \to S \setminus \{e\}$ we define a homomorphism $h_f: *_{i \in I}G_i \to S$ as follows:

Let W be a reduced word. Find gaps τ or τ^- for $\tau \in \mathcal{T}$ in W. Remark that there exist only finitely many ones. Hence according to $f(\tau)$ and $f(\tau)^{-1}$ we define $h_f(W)$.

Theorem: A homomorphism $h : *_{i \in I}G_i \to S$ is given by a natural amalgamation of h_f and finitely many $h_i : G_i \to S$ ($i \in F \in I$), where h_f is given by an overlapping family \mathcal{T} and a map from \mathcal{T} to $S \setminus \{e\}$. Moreover \mathcal{T} defines a free subgroup H of $*_{i \in I}G_i$ where $*_{i \in F}G_i * U$ is a retract and h is factored through this subgroup.

12

To show the latter statement, we choose $W_{\tau} \in \tau \in \mathcal{T}$ so that W_{τ} does not contain elements in $\bigcup_{i \in F} G_i$ and any tail of W_{τ} is not a subword of W_{σ} for $\sigma \neq \tau$. Then $\{W_{\tau} : \tau \in T\}$ freely generates a subgroup of $\underset{i \in I}{\ll} G_i$, i.e. $\underset{\tau \in \mathcal{T}}{\ll} W_{\tau}$ is a free subgroup. The retraction $r : \underset{i \in I}{\ll} G_i \rightarrow \underset{i \in F}{\ll} G_i * \underset{\tau \in \mathcal{T}}{\ll} W_{\tau}$ is defined as follows: For a reduced word W find elements in $\bigcup_{i \in F} G_i$ and also gaps τ or τ^- for $\tau \in \mathcal{T}$ in W, then leave elements in $\bigcup_{i \in F} G_i$ and correspond W_{τ} or W_{τ}^- according to the ordering of gaps in W.

Question of non-commutative ultraproducts

Investigate

$$\lim_{\leftarrow} (*_{i \in F} \mathbb{Z}_i : F \subseteq I)/U,$$

when U is a non-principal countably complete ultrafilter on I.

When U induces measures on $[I]^n$ s, the group is of the cardinality 2^{\aleph_0} . What is the cardinality in general?