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Čech homotopy groups of one-dimensional

continua

Katsuya Eda

Department of Mathematics, Waseda University, Tokyo 169-8555, JAPAN

2013 February



Well-known facts

A continuum we mean a connected compact meric space.

Let H be the Hawaiian earring.

Theorem 1 (Well-known). Let X be a one-dimensional

continuum. Then, the Čech homology group Ȟ1(X) is

isomorphic to a free abelian group of finite rank or the direct

product of countable copies of the integer group

Zω ∼= Ȟ1(H).
In addition if X is locally connected, i.e. X is a Peano

continuum, the Čech homotopy group (shape group) π̌1(X)
is isomorphic to a free group of finite rank or the canonical

inverse limit of free groups of finite rank which is isomorphic

to π̌1(H).
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continued

Why are the assumptions different (local connectivity)?

Answer: Under the local connectivity, we have arbitrary finer

finite coverings consisting of connected open sets. Hence the

bonding homomorphisms between free groups of finite rank

become surjective.

Since every subgroup of a free abelian group of finite rank is

also a free abelian group of finite rank, in the abelian case

we can reform the inverse sysytem so that every bonding

homomorphism is surjective. But, a subgroup of a free group

of finite rank may not be a free group of finite rank (The

commutator subgroup of the free group of rank 2 is a free

group of countable rank).



Theorem 2

Theorem 2. (E-Nakamura [EN]) Let X be a one-dimensional

continuum. Then, the Čech homotopy group (shape group)

π̌1(X) is isomorphic to one of the following groups (1)-(5).

Conversely, each of the groups (1)-(5) is isomorphic to some

π̌1(X). Moreover, groups (1)-(5) are mutually

non-isomorphic.

(1) free groups of finite rank;

The Čech homotopy group of the Hawaiian earring (the

canonical inverse limit of free groups of finite rank).

(2) lim←−(Gn, pn : n < ω) where Gn = ∗i<nZi and

pn : Gn+1 → Gn is the projection such that

pn | ∗i<n Zi = id and pn(Zn) = {e};
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Theorem 2 continued

And What?

(3) the free group of countable rank Fω;

Attach Fω along the construction of (2).

(4) lim←−(Gn, pn : n < ω) where G0 = Fω, Gn+1 = Gn ∗ Zn

and pn : Gn+1 → Gn is the projection such that

pn | Gn = id and pn(Zn) = {e};

Mimick the construction of (2) and use copies of Fω instead

of those of Z.

(5) lim←−(Gn, pn : n < ω) where G0 = Fω and

Gn+1 = Gn ∗ Fωn where Fωn is a copy of Fω,

pn : Gn+1 → Gn is the projection such that pn | Gn = id
and pn(Fωn) = {e}.
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Caution about inverse limits

It scarecely happens that

lim←−
n→∞

Gn ∗Hn
∼= lim←−

n→∞
Gn ∗ lim←−

n→∞
Hn.

In particular

lim←−
n→∞

(∗0≤i<nZi, pn) 6∼= Z ∗ lim←−
n→∞

(∗1≤i<nZi, pn).

This is far from the case of the fundamental group of the

Hawaiian earring, where we have free groups of finite rank as

its free factors.



Consequences and Conclusion of Theorem 2

The classification of the shape groups of one-dimensional

continua is the same as that of the shape groups of

one-dimensional connected separable metric spaces.

There exist a continuum X such that π̌1(X) is isomorphic

to π̌1(B) for the coutable bouquet B, but Ȟ1(X) is NOT

isomorphic to Ȟ1(B) which is a free abelian group of

countable rank.

Conclusion

As SHAPE theorists know it, the SHAPE groups are NOT

reliable.
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How is the free group of countable rank realized?

Consider the following injective inverse sequence. The limit

is a subgroup of the free group of rank 2!
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Basic facts about free groups

Theorem 3 (Well-known, but nontrivial fact).

Let h : F0 → F1 be a surjective homomorphism between

free groups.

Then, Ker(h) is a free factor of F0, i.e.

F0 = Ker(h) ∗H for some H.

Theorem 3 implies that the inverse limit of free groups of

finite rank is isomorphic to one of groups (1)-(5).



Non-isomorphicness of groups in the list

Groups in (1) and (3) are countable.

A free groups which are homomorphic images of the group

(2) is of finite rank by the Higman theorem (Specker

phenomenon).

⊕ωZ⊕ Zω is the homomorphic image of the group (4) (G4).

(⊕ωZ)ω is the homomorphic image of the group (5) (G5).

These groups are in the Reid-class [EkM] and

non-isomorphic.

Let RZ(A) =
∩
{Ker(h)|h ∈ Hom(A, Z). Then

Ab(G4)/RZ(G4) ∼= ⊕ωZ⊕ Zω, Ab(G5)/RZ(G5) ∼= (⊕ωZ)ω.



Torsionfree algebraically compact abelian groups

Well-known facts:

(1)(due to Kaplansky): It is a direct sum of the divisible

subgroup (∼= ⊕IQ) and the direct product of Ap for primes

p, where Ap is the p-adic completion of a free abelian group.

(2) The algebraical compactness is equivalent to the

pure-injectivity.

Less-known fact (due to Dugas-Goebel): A is algebraically

compact if and only if U(A) = UU(A) and A/U(A) is

complete under Z-adic topology, where U(A) =
∩

n∈N n! A.

(n + 1)!|an+1 − an (n ∈ N)→

∃a∞( (n + 1)! | a∞ − an (n ∈ N) )

If A is torsionfree, U(A) = UU(A) holds.



Secret Fact

It easy to apply these to Wild Topology. If sizes of loops or

maps converge to zero, we can add infinitely many

meaningful ones. For given an with (n + 1)! | an+1 − an,

find loops bn with

(n + 1)!bn = an+1 − an

such that bn is of small sizes or is equal to the sum of loops

small sizes as homology classes.

Intuitively put

a∞ = Σ∞
n=1(n + 1)!bn + a1.

One necessary trick here is to make the divisibility in the

noncommutative stage.
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