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Fundamental groups and singular homology groups

The fundamental groups of one-dimensional Peano continua
determine the homotopy types of them [E2].

Particularly,
the fundamental groups of everywhere non-semi-locally
simply connected one-dimensional Peano continua determine
the homeomorphism types of them [E1]. Therefore, the
fundamental groups of one-dimensional Peano continua are
abundant.
The singular homology groups H1 are the abelianizations of
the fundamental groups and consequently they possibly may
be less abundant. They are not only less abundant, but are
scarce, and they have the same simple classification as the
Čech homology groups and shape groups.
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Singular homology groups

Theorem [E4]. Let X be a one-dimensional Peano
continuum. Then the singular homology group H1(X) is
isomorphic to a free abelian group of finite rank or the
singular homology group of the Hawaiian earring H1(H)

∼= Zω ⊕ ⊕cQ ⊕ Πp:primeAp,

where ω is the least infinite ordinal, c is the cardinality of the
continuum and Ap is the p-adic completion of the free
abelian group of rank c [EK1].



A gap in my proof and filling it

A sequence of non-degenerate reduced paths f1, · · · , f2N is
of 0-form, if its concatenation f1 · · · f2N is a loop and there
exist pairings {ik, jk} (1 ≤ k ≤ N) of the index set
{1, · · · , 2N} such that fik ≡ f−

jk
for 1 ≤ k ≤ N .

The word 0-form means that the concatenated loop
represents the trivial element in the singular homology
group. We remark that the empty sequence is of 0-form.
0-form Lemma: Let l0 be a reduced loop in a
one-dimensional space X. Then, [ l0 ]h = 0 in H1(X) if and
only if l0 is a degenerate loop or there exists a 0-form
f1, · · · , f2N such that l0 ≡ f1 · · · f2N .
So far there is no proof of n-form lemma. The word n-form
means that the concatenated loop represents an element
divisible by n in the singular homology group.



Torsionfree algebraically compact abelian groups (review)

Well-known facts:
(1)(due to Kaplansky): It is a direct sum of the divisible
subgroup (∼= ⊕IQ) and the direct product of Ap for primes
p, where Ap is the p-adic completion of a free abelian group.

(2) The algebraical compactness is equivalent to the
pure-injectivity.
Why is this a countart part of the Specker phenomenon and
how they are complementary? (arranged one - garbage)

projective (free) — injective (divisible)
domain — range (with many homomorphisms)
The Specker phenomenon: There exist only natural
homomorphisms from direct products, i.e. groups with
structures admitting infinite operations.
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Review continued

Less-known fact (due to Dugas-Goebel): A is algebraically
compact if and only if U(A) = UU(A) and A/U(A) is
complete under Z-adic topology, where U(A) =

∩
n∈N n!A.

(n + 1)!|an+1 − an (n ∈ N) →

∃a∞( (n + 1)! | a∞ − an (n ∈ N) )

If A is torsionfree, U(A) = UU(A) holds.
If B is torsionfree and Ker(h) is complete mod-U for a
homomorphism σ : A → B, then Ker(h) is a pure
sunbgroup of A. In addition if A is torsionfree, we have
A ∼= Ker(h) ⊕ Im(h).



No more secret, but almost unknown Fact

It is very easy to apply these to Wild Topology. If sizes of
loops or maps converge to zero, we can add infinitely many
meaningful ones .
For given an with (n + 1)! | an+1 − an, find loops bn with

(n + 1)!bn = an+1 − an

such that bn is of small sizes or is equal to the sum of loops
of small sizes as homology classes.

Intuitively put

a∞ = Σ∞
n=1(n + 1)!bn + a1.

One necessary trick here is to make the divisibility in the
noncommutative stage using the lexicographical ordering on
trees.
These have been used more than twenty years.
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The canonical homomorphism from the singular homology to

the Čech homology

Use the equivalence between the Čech homology and the
Alexander homology and map the vertices of singular
simplices of subdivisions.
Let σ : H1(X) → Ȟ1(X) be the canonical homomorphism
(σ is surjective for every Peano continuum [EK2, Corollary
1.2]).

Lemma. For a one-dimensional Peano continuum X,
Ker(σ) is a torsionfree algebraically compact group.

This depends on the fact that the homology class of a cycle
in Ker(σ) is a sum of those of arbitrarily small loops.

But, how can we put together arbitrarily small but sprinckled
cycles and how can we insure the required properties?



The canonical homomorphism from the singular homology to
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Global construction

An additional idea to the twenty-years old method is a
construction in [CC] for highly divisible elements or a part
also in [EK2] using loops filling the given space. To combine
these ideas, we need to present loops rigorously.
Given homology classes bn such that b∨n are trivial. Then, we
can replace bn with arbitrarily small sizes of loops. First we
take a path f filling the space and attach small loops.
Let fn,i be loops with Σkn

i=1[fn,i]h = bn.
We attach n + 1 copies of fn,i at the predecessors and
consequently (n + 1)! copies of them. According kn we
controll the sizes of loops, i.e. chopping to kn pieces.

Our construction is made of (3k + 2)kn pieces works. See
the paper for details.



Remarks

1. The compactness is essential to the algebraic
compactness of Ker(σ).
2. On the otherhand, we have RZ(Ker(σ)) = {0} for
locally path-connected metric spaces X.
3, For a Peano continuum, σ is surjective for H1 and for an
LCn compact metric space σ is surjective for Hn+1. In
addition Ker(σ) is complete mod-U. It seems to be possible
to analyze these more.
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