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Abstract. Presuming the consistency of ZF, according to the Gödel completeness

theorem and second incomplete theorem we have a model of ZF in which there exists

a proof of the inconsistency of ZF. We prove that formulas of hyperfinite length occur

in this proof and the length of the proof is also hyperfinite.

Let ZF be the Zermelo-Frankel set theory. We presume that ZF
is consistent. Then, the Gödel second incompleteness theorem [2]
implies Consis(ZF ) is not provable in ZF, where Consis(ZF ) is a
closed formula coding the consistency of ZF in a standard way. Now
the Gödel completeness theorem [1] implies that there exists a model
M of ZF in which the negation of Consis(ZF ) holds, i.e. there exists
a proof in M from ZF to the contradiction ¬∀x(x = x). Of course
this proof should not be a standard proof and the theory ZF inM is
not a standard one. To express these more exactly let NM be the set
of the natural numbers in a model M of ZF. Then the initial part of
NM corresponds to the set of the standard natural numbers N and
we identify this part with N. Then, the set NM \ N is non-empty.
We call a natural number in NM \ N hyperfinite.
In this paper we show that in the above proof a formula of hy-

perfinite length actually occurs and the height of the proof is also
hyperfinite. To state our theorem precisely we define some notions
and fix our proof system. As we remark in Remark 2.1, our results
are depending on axiom systems. We use a Frege-Hilbert style proof
system, which we explain more in the next section. Since we only
deal with systems without function symbols or individual constant
symbols, the usual Peano Arithmetic is not in our scope. When we
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mention the Peano Arithmetic (abbreviated by PA), it is the one ob-
tained by adding new predicates for function symbols with additional
axioms in a standard way.
As we shall show, the fact that a formula of hyperfinite length

actually occurs in the inconsistency proof is proved straightforwardly.
But, to show the fact that the height of the proof is hyperfinite, we
need some device.

§1. Formal system. For the predicate calculus we adopt a sys-
tem with the only logical symbols ⊃, ¬ and ∀. We use ∧, ∨ and ∃ as
abbreviations as usual, i.e. ∃x is the abbreviation of ¬∀x¬ and so on.
The variables are given as vn for n ∈ N and we usually use xn and
yn auxiliarily. Formulas are defined as usual. In particular, if P is
an n-ary predicate or an n-ary predicate variable, the latter of which
we shall introduce later, the prime formula is expressed as Px1 · · · xn
for variables x1, · · · , xn to display the real sequence of letters (for
= and ∈ we express as x1 = x2 and x1 ∈ x2 as usual). The length
of a formula is the number of the occurrences of symbols, where we
adopt the Poland expression for formulas though we never explicitly
use it. We use the symbol ≡, when the two sequences of letters are
the same. We explicitly state our system below.

Logical Axioms

A ⊃ (B ⊃ A) (A ⊃ (B ⊃ C) ⊃ (A ⊃ B)) ⊃ (A ⊃ C)

¬¬A ⊃ A (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A)
∀xA(x) ⊃ A(y) ∀x(C ⊃ A(x)) ⊃ (C ⊃ ∀xA(x))

x does not occur in C freely.

∀x(x = x) ∀x∀y(x = y ⊃ (A(x) ⊃ A(y)))

Inference Rules

(I1)
A A ⊃ B

B
(I2)

A(x)

∀xA(x)
As logical axioms, some axiom in ZF or in PA is given as an axiom

schema. Except when the emphasis of a schema is necessary, we
simply call it an axiom. Instead of deductions we define the notion
of proofs to make a distinction between axioms and conclusions. To
describe proofs and formulas, we use finite plane trees with labeled
formulas. A finite tree T is a finite partially ordered set with the
minimal element r, called the root, A branch in a tree is a maximal
linearly ordered subset of the tree. such that {s ∈ T | s ⪯ t} is
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linearly ordered for each t ∈ T . For a formula F , let TF be a labeled
plane tree whose labels are formulas appearing in the formation of
F . For instance, when F ≡ (A ⊃ B) ⊃ C, the root of TF is F and
the immediate successors of the root are A ⊃ B and C etc. On the
plane the position of A ⊃ B is left to C, and A ⊃ B and C are upper
to F . For each t ∈ TF we denote the formula labeled to t by At. A
node is not just a formula, but is with its position. But sometimes
we regard a node as a formula for simplicity. The height of a formula
F is the maximal length of branches in TF .
A proof P is also a labeled plane tree TP where the formula labeled

to a node t is denoted by At and each node of TP has at most two
successors, and which satisfies the following:

(0) if there exists no successor of t, i.e. t is a leaf, then At is an
axiom;

(1) if s is the unique successor of t, then At is a conclusion of As by
inference rule (I2); and

(2) if s0 and s1 are distinct successors of t and s0 is left to s1, then
At is conclusion of As0 and As1 by inference rule (I1) where As0
is left to As1 .

For the root r of TP we call Ar the conclusion of P . The height of a
proof P is the maximal length of of branches in TP . A branch in a
proof P is the sequence of formulas (At : t ∈ b) where the ordering
is induced from a branch b in TP .

Definition 1.1. Let x1, · · · , xn be the enumeration of variables
appearing in a formula A without repitition. A formula B is similar
to A, if B is the result of replacing all the occurrences of variables
x1, · · · , xn in A by variables y1, · · · , yn respectively where y1, · · · , yn
are mutually distinct.

We note that B is similar to A if and only if A is similar to B.

§2. Main theorem, definitions and preliminary lemmas.
In this section we prove the first half of the following theorem, i.e.
Lemma 2.3.

Theorem 2.1. Let K be ZF or PA and M be a model of K in
which ¬Consis(K) holds.
Then, a proof of the contradiction ¬∀x(x = x) from K in M con-

tains a formula of hyperfinite length and the height of the proof is
also hyperfinite.
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Remark 2.1. Here we remark that our results and proofs depend
on the systems. For example, if we adopt the axioms of ZF closed
under inference rules, then every provable statement is proved in one
line and this also holds in M . We adopt the standard axioms of ZF,
for instance, [3] or [4]. If we adopt a proof system LK which admits
only prime formulas in the beginning sequences and as the addition-
rules, the appearance of a formula of hyperfinite length in a proof
automatically implies that the height of the proof is also hyperfinite.

In the following a theory K stands for ZF or PA.

Definition 2.2. A proof P is without detour, if no branch of TP
contains distinct nodes s and t such that As and At are similar.

Lemma 2.2. If C is a conclusion of a proof P in K, then there
exists a proof Q of C in K without detour such that the height of Q
is equal to or less than that of P and the maximal length of formulas
occurring in Q is equal to or less than that of formulas occurring in
P.

Proof. Suppose that there exist distinct s, t ∈ TP such that s ⪯ t,
As and At are similar, and At is the result of replacing variables
x1, · · · xn by y1, · · · , yn from As. For w ∈ TP , let Pw be the proof of
Aw such that TPw = {u ∈ TP | w ⪯ u}.
Since a similar formula to an axiom of K is also an axiom of K,

replacing all the occurrences of xi in Pt by yi and all the occurrences
of yi in Pt by xi we have a proof of As whose height is the same as
that of TPt . Replace the proof of As in P by this proof. Iterating this
replacement we have a proof of C with the requiring properties. ⊣
Lemma 2.3. Every proof of the contradiction ¬∀x(x = x) from K

in M contains a formula of hyperfinite length.

Proof. To the contradiction, suppose that the length of every
formula occurring in a proof P of ¬∀x(x = x) is standard. Using
Lemma 2.2 in M , we have a proof Q in K satisfying the properties
there. Let m0 be the the maximal length of formulas appearing in
Q. Then, m0 should be standard by the assumption. Since the
number of the symbols in K other than variables are finite in the
standard sense and the maximal length of formulas appearing in Q
is bounded by m0, the number of similarities of formulas appearing
in Q is bounded by some standard natural number m1. Since Q is a
proof without detour, the lengths of branches in Q are bounded by
m1 and so is the height of Q.
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Now, the total number of formulas appearing in Q is bounded
by 2m1 and consequently the total number of variables occurring
in Q is bounded by 2m1m0. Therefore, replacing variables indexed
by hyperfinite natural numbers by variables indexed by standard
natural numbers, we have a standard proof of ¬∀x(x = x), which is
a contradiction. ⊣

§3. Core proofs. To prove the remaining statement of Theo-
rem 2.1 we introduce a notion ”core proofs”.
Let L+ be the extended language with additional predicate vari-

ables. According to this extension, we extend axioms in K to K+

naturally. For a finite set Γ of predicate variables L ∪ Γ is a sublan-
guage of L+ restricted predicates to Γ.

Definition 3.1. Let ∗ be a distinguished symbol which is a vari-
able not in L+. A holed formula is a formula in L+∪{∗} without any
free occurrences of variables other than ∗ and without any bound oc-
currences of ∗. For each formula F in L+, let F be the holed formula
obtained by replacing all the free occurrences of variables by ∗. The
arity of a holed formula H is the number of occurrences of ∗. If n is
the arity of H, H(x1, · · · , xn) is the formula obtained by replacing
the i-th occurrence of ∗ from the left in H by xi.

Definition 3.2. An assignment σ has a finite support Γ, which
is a finite set of predicate variables, and assigns a holed formula P σ

to each predicate variable P , where the arities of P and P σ are the
same, and P σ ≡ P ∗ · · · ∗ for P /∈ Γ, where the number of ∗ is the
arity of P . For a predicate letter P in L, define P σ ≡ P ∗ · · · ∗, for
instance, ∈σ≡ ∗ ∈ ∗.
For every formula in L+ and holed formula F we inductively define

F σ as follows: For a predicate variable or predicate letter P in L,
define (Px1 · · · xm)σ as the formula P σ(x1, · · · , xm), where xi maybe
∗. Then, define inductively as: (¬A)σ ≡ ¬Aσ, (A ⊃ B)σ ≡ Aσ ⊃ Bσ

and (∀xA)σ ≡ ∀xAσ.
An assignment σ is admissible for Px1 · · · xm, if the substitutions

of xi to ∗ do not violate the scopes of quantifiers in P σ, i.e. the i-th
occurence of ∗ is not in a scope of a quantificatio ∀xi. An assignment
σ is admissible for a formula or a proof, if σ is admissible for every
Px1 · · · xm occurring in the formula or the proof respectively.

We remark that sometimes an assignment assigns a predicate vari-
able to a formula in L+ but not in L.



6 K. EDA AND T. UESU

Lemma 3.1. Let σ be an assignment such that σ is admissible for
a pime formula Px1 · · · xm. If (Px1 · · · xm)σ ≡ F σ for a formula F ,
then P σ ≡ F σ holds.
In particular if F ≡ Qy1 · · · yn for a predicate variable Qand σ is

also admissible for Qy1 · · · yn, then P σ ≡ Qσ, m = n and xi ≡ yi for
1 ≤ i ≤ m = n.

Proof. Since σ is admissible, the i-th ∗ in P σ is not in the scope
of bound variable xi in P

σ and hence the number of free occurrences
is m which is the same for F σ. Therefore we have P σ ≡ F σ. Now
the second statement is clear. ⊣
Since an assignment never increase free occurrences of variables, the
assignments follow the regulations for the subset axiom, the replace-
ment axiom in ZF and the induction axiom in PA. Therefore it is
rather straightforward to prove the following lemma and we omit its
proof.

Lemma 3.2. Let P be a proof in K+ and σ is an assignment. Then
Pσ is also a proof.

Definition 3.3. If P is a proof in K+ and σ is an assignment
which assigns a formula in L to each predicate variable, P is called
a core proof of Pσ by σ.

Lemma 3.3. Let F be a formula and F its holed formula, and σ
be an assignment. Then, F

σ
is the holed formula of F σ.

Proof. Let P be a predicate letter in L or a predicate vari-
able. When F ≡ Py1 · · · ym, F σ ≡ P σ(y1, · · · , ym) and F

σ ≡
P σ(y1, · · · , ym) by definition and hence the conclusion holds. Since
the induction steps for ¬ and ⊃ are obvious, we only deal with
F ≡ ∀xG.
By induction hypothesis Gσ ≡ Gσ. Let F ≡ ∀xG0. Then, G is

obtained from G0 by replacing free occurrences of x by ∗ and hence
∀xGσ

0 ≡ ∀xGσ. Since F
σ ≡ ∀xGσ

0 , we have the conclusion. ⊣
We have defined the height of a formula in Section 1. An axiom is not
always given by a formula and so we need to explain how to define
the height of an axiom. We consider explicit forms of axioms and
define the heights. For instance, the heights of the logical axioms
A ⊃ (B ⊃ A) and ∀x(x = x) are 3 and 2, respectively, and the
height of the subset axiom in set theory

∀x∃y∀z((z ∈ y ⊃ z ∈ x ∧ A(z)) ∧ (z ∈ x ∧ A(z) ⊃ z ∈ y))
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is 11, considering the abbreviations ∃ and ∧.
Let m0 be the maximal height of axioms, for instance the maximal

height of logical axioms is 6. Hence, m0 becomes that of an axiom
of K.
Define function g by:

g(1,m0) = m0

g(n+ 1,m0) = g(n,m0)(2
g(n,m0)+1 + 1).

Theorem 3.4. Let m0 be the maximal height of axioms in K. Let
P be a proof of its height n. Then, there exist a proof K in K+ and an
assignment σ such that K is a core proof of P by σ, σ is admissible
for K and the heights of formulas occurring in K are bounded by
g(n,m0).

§4. Proofs of Theorems 2.1 and 3.4. Before proceeding to
the proof of Theorem 3.4 we prove some lemmas. The first lemma
is straight forward and we omit its proof.

Lemma 4.1. Let φ be an assignment with support Γ and A a for-
mula. Suppose that the height of a formula A is equal to or less than
h and the height of Pφ for P ∈ Γ is bounded by h0. Then the height
of Aφ is less than or equal to h+ h0.

Lemma 4.2. Let P,Q be predicate variables, A be a formula such
that A ≡ A(x1, · · · , xm), K0 be a proof of A, K1 be a proof of
Px1 · · · xmxm+1 · · · xn for m ≤ n and φ be an assignment such that
Pφ ≡ A ⊃ Q ∗ · · · ∗, where the arity of Q is n−m. If the heights of
formulas occurring in K0 or K1 are bounded by h, then the heights

of formulas in proof
K0 Kφ

1

Qxm+1 · · · xn
are bounded by 2h+ 1.

Proof. We have

(Px1 · · · xmxm+1 · · · xn)σ ≡A(x1, · · · , xm) ⊃ Qxm+1 · · · xn
≡A ⊃ Qxm+1 · · · xn

and hence
K0 Kφ

1

Qxm+1 · · · xn
is a proof. Since the height of A ⊃ Q∗· · · ∗

is less than or equal to h+1, the conclusion follows from Lemma 4.1.
⊣

Next we prove the main lemma for Teorem 3.4.

Lemma 4.3. Let k be the number of predicate variables occurring
in F or G, and h0 the maximal height of F and G. Suppose that
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F σ ≡ Gσ for an assignment σ. Then there exists an assignment φ
such that

(1) (Pφ)σ ≡ P σ for each predicate variable P ; and
(2) Fφ ≡ Gφ and the height of Fφ (equal to that of Gφ) is less than

or equal to (k + 1)h0;

Proof. We inductively define assignments ψ1, · · · , ψi for some i ≤
k so that Fψ1···ψi ≡ Gψ1···ψi and the following are satisfied. Let Γ be
the set of predicate variables of occurring in F or G and {Pj} be the
support of ψj for 1 ≤ j ≤ i.

(1i) (Qψ1···ψi)σ ≡ Qσ for every predicate variable Q ∈ Γ;
(2i) the height of (Pj)

ψj is less than or equal to h0; and
(3i) the heights of Fψ1···ψi and Gψ1···ψi are bounded by h+ ih0.

We consider the trees TFψ1···ψj−1 and TGψ1···ψj−1 and call a P -leaf for
a leaf labeled by Px1 · · · xm for some x1, · · · , xm. For a node t ∈
TFψ1···ψj−1 or t ∈ TGψ1···ψj−1 , t

∗ ∈ TGψ1···ψj or t∗ ∈ TFψ1···ψj is defined
respectively, if tσ and (t∗)σ are the same node in TFσ(= TGσ), and t

∗

is undefined, otherwise.
Unless Fψ1···ψj−1 ≡ Gψ1···ψj−1 , there exists a P -leaf t such that t∗ is

undefined or t∗ is not a P -leaf. We choose Pj so that the height of
P σ
j is maximal among such P . Then we have a Pj-leaf t such that
t∗ exists but is not a Pj-leaf, since the undefinedness of t∗ implies
the existence of a Q-leaf s such that the height Qσ is strictly greater
than that of P σ

j , s
∗ exists and s∗ is not a Q-leaf.

We have TF ⊆ · · · ⊆ TFψj−1 ⊆ TFσ and TG ⊆ · · · ⊆ TGψj−1 ⊆ TGσ .
We prove the following by induction on j; If a P -leaf t has t∗ for
P ∈ Γ \ {P1, · · · , Pj−1}, then the tree of the formula At∗ has a copy
in TF or TG. We remark that for t ∈ TFψj−1 ⊆ TFψj the formula At
is related to TFψj−1 and TFψj and generally they are distinct.
We have chosen Pj from Γ \ {P1, · · · , Pj−1} so that the height

of P σ
j is maximal among such P . By induction hypothesis TFψj and

TGψj are defined by attaching trees corresponding to At∗ . Hence their
heights are less than or equal to h0. Now let P ∈ Γ\{P1, · · · , Pj} and
suppose that a P -leaf t has t∗. If t∗ does not belong to TFψj−1∪TGψj−1 ,
then t∗ belongs to a part added according to Pj and the tree of At∗
has a copy in TF or TG. Suppose that t∗ belongs to TFψj−1 ∪ TGψj−1 .
Since the height of P σ

j is not less than that of P σ, no trees are added
above t∗ in TFψj−1 ∪ TGψj−1 according to Pj. Therefore, the tree of
the formula At∗ is a copy in TF or TG by induction hypothesis.
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Since the maximal height of TF and TG is h0, in each step the
height possibly increases at most h0 and we have the property (3i).
The other properties are clear now. Since the cardinality of Γ is k,
we have the conclusion. ⊣
Proof of Theorem 3.4. We prove this theorem by induction on the

height of a proof. When the height of P is 1, the proof consists of
an axiom. For instance, we deal with ∀xA(x) ⊃ A(y).
Let A be the holed formulas of A(x) and the numbers of ∗ be

m. Then, we have x1, · · · , xm such that A(x) ≡ A(x1, · · · , xm).
Let the arities of predicate variables P be m and P σ ≡ A. Now
∀xPx ⊃ Py. is an axiom and its height is 3, i.e. equal to or less
than m0. Let y1, · · · , ym be the sequence obtained from replacing xi
such that xi ≡ x in the sequence x1, · · · , xm by y.
We have

(∀xPx1 · · · xm ⊃ Py1 · · · ym)σ

≡ ∀x(P σ(x1, · · · , xm) ⊃ P σ(y1, · · · , ym)
≡ ∀x(A(x1, · · · , xm) ⊃ A(y1, · · · , ym)
≡ ∀xA(x) ⊃ A(y).

LetK be the proof consisting of one formula ∀xPx1 · · · xm ⊃ Py1 · · · ym
then σ is an admissible assignment and we get the conclusion. For
other axioms we can prove similarly and omit their proofs.
Suppose that the last inference rule of P is

(I2)
A(x)

∀xA(x)
and K0 is a proof of X in L+ such that Xσ ≡ A(x), where σ is
admissible for K0.

Let K be
K0

∀xX
. Then, K is a proof. Now the admissibility of σ

in K follows from that in K0. Since the maximal height of formulas
possibly increases at most 1, we have the conclusion.
Let the last inference rule of P be the modus ponens

(I1)
A A ⊃ B

B

and the height of P is n + 1. By induction hypothesis we have two
proofs K0 and K1 in L

+, where K0 and K1 contain distinct predicate
variables, and an assignment σ such that

(1) Kσ
0 is a proof of A;

(2) Kσ
1 is a proof of A ⊃ B;
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(3) the heights of formulas in K0 or K1 are bounded by g(n,m0).

Let X0 be the conclusion of K0 and X be that of K1. If X is a
prime formula Px1 · · · xn. Since Xσ ≡ A ⊃ B, we introduce a new
predicate variable Q and define an assignment φ with its support
{Q} such that Pφ ≡ A ⊃ Q ∗ · · · ∗ where the arity of A is m and
that of Q is n−m. We extend σ so that Qσ ≡ B. Now Lemma 4.2
implies the conclusion.
Otherwise, i.e. X is not a prime formula, then we have X1 and Y

such that X ≡ X1 ⊃ Y , Xσ
1 ≡ A and Y σ ≡ B. If X0 ≡ X1, then

we can apply the modus penons and see that the other requirements
are satisfied. Otherwise we apply Lemma 4.3. Since the heights are
bounded by g(n,m0), the number of predicates variables occurring
in X0 or X1 is less than or equal to 2 · 2g(n,m0). By Lemma 4.1 the
heights of formulas are bounded by g(n,m0)(2

g(n,m0+1 + 1). ⊣
Proof of Theorem 2.1. Since the first statement is proved in

Lemma 2.3, it suffices to show the second one. To show by contradic-
tion, suppose that P is a proof of ¬∀x(x = x) from K in M and the
height of P is a standard number n. We apply Theorem 3.4 in M .
Then we have a core proof K of P such that the heights of formulas
occurring in K are bounded by g(n,m0). Replace all prime formulas
Px1 · · · xn by ∀x(x = x) for predicate variables P in K. Then we
have a proof Q of ¬∀x(x = x) from K such that the heights of for-
mulas occurring in Q are bounded by g(n,m0). Let c be the maximal
length of a prime formula in K, which is a standard number. Then,
the lengths of formulas occurring in Q are bounded by a standard
number (c+ 1)g(n,m0) + c, which contradicts Lemma 2.3. ⊣

Remark 4.1. We did not restrict numbers of variables in our proof
of getting a bound for heights. Such restrictions are possibly mean-
ingful, when we estimate the length of formulas more precisely. As
we have mentioned earlier, our result concerns systems. Lemma 2.3
for PA with a standard formulation can be proved similarly, but we
have not succeeded to prove Theorem 2.1 for it.
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