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QUESTION AND HOMOMORPHISMS ON ARCHIPELAGO

GROUPS

KATSUYA EDA

Abstract. The classical archipelago group is a quotient group of the funda-

mental group of the Hawaiian earring by the normal closure of the free group
of countable rank, which is denoted by A(Z). Since the fundamental group of

the Hawaiian earring is expressed by the free σ-product ××ωZ, we obtain an

archipelago group A(G) by replacing Z with G. In [1] the authors asserted
that A(Z) and A(Z/kZ) are isomorphic for k ≥ 3. We clarify a gap in their

proof and show that there are surjective homomorphisms between A(Z/kZ)’s
and A(Z) for k ≥ 2.

1. Introduction and definitions

The main purpose of this note is to state the main question about archipelago
groups and to investigate the homomorphisms defined in [1]. We also point out
a gap in their proof of the main result in [1] by showing a certain property of
the homomorphisms. For future developments, we define many things again and
somewhat differently from [1]. Archipelago groups are the fundamental groups of
so-called archipelagos, which are objects in wild algebraic topology. The reader is
refered to [1] for the background.

We intend explicit presentations, but words are also used to express elements
of free σ-products. For basical notions we refer to [2]. First we define archipelago
groups. Let Gi (i < ω) be groups. Define A(Gi : i < ω) to be the quotient group
of the free σ-product ××i<ωGi factored by N(∗i<ωGi), which is the normal closure
of the free product ∗i<ωGi.

Let σG :××i<ωGi →××i<ωGi/N(∗i<ωGi) and σH :××i<ωHi →××i<ωHi/N(∗i<ωHi)
be the quotient homomorphisms.

Next we introduce interesting homomorphisms in [1]. Let φi : Gi → Hi for i < ω
be maps which preserve the inverses, i.e. φi(x

−1) = φi(x)
−1. We define φ : W(Gi :

i < ω) → W(Hi : i < ω) by: φ(W ) = {α ∈ W |φi(W (α) ̸= e where W (α) ∈ Gi}
and

φ(W )(α) = φi(W (α)), if W (α) ∈ Gi.

Then, we define φ : ××i<ωGi → ××i<ωHi by φ(W ) = φ(W ) for reduced words W .
Since W is restricted to reduced words, φ is well-defined.

Finally we define φ : A(Gi : i < ω) → A(Hi : i < ω) by: φ ◦ σG = σH ◦ φ, where
the well-defined-ness is assured by the fundamental homomorphism theorem.
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2. Results and proofs

A main part of the following theorem is contained in [1].

Theorem 2.1. [1] Let φi be an inverse preserving map for each i < ω. Then,
φ is a homomorphism and the non-triviality of φ is equivalent to the existence of
infinitely many i for which there exists an x ∈ Gi such that x ̸= e and φi(x) ̸= e.

Proof. First we show that σH ◦φ is a homomorphism. Let U, V ∈ W(Gi : i < ω) be
reduced words and W ∈ W(Gi : i < ω) be the reduced word such that W = UV .
Then, there exists a reduced word W0 such that

(1) U ≡ U0W0, V ≡ W−
0 V0 and U0V0 is reduced; or

(2) U ≡ U0aW0, V ≡ W−
0 bV0 for some a, b ∈ Gi satisfying ab ̸= e and U0(ab)V0

is reduced.

Therefore W ≡ U0V0 or W ≡ U0(ab)V0 and hence φ(W ) = φ(U0)φ(V0) or φ(W ) =
φ(U0)φi(ab)φ(V0).

Since φ(W−
0 ) ≡ φ(W0)

− by preservation of the inverses,

φ(U)φ(V ) = φ(U0)φ(W0)φ(W
−
0 )φ(V0) = φ(U0)φ(V0)

or

φ(U)φ(V ) = φ(U0)φi(a)φ(W0))φ(W
−
0 )φi(b)φ(V0)

= φ(U0)φi(a)φi(b)φ(V0)

Now, in the both bases we have

σH(φ(U)φ(V )) = σH(φ(U0)φ(V0)) = σH(φ(W ))

and we have shown σH ◦ φ is a homomorphism.
If there exist xi ∈ Gi for infinitely many i such that xi ̸= e and φi(xi) ̸= e, the

non-triviality of the map follows from considering a word obtained by ordering xi

in a natural way. Since a reduced word consists of nontrivial elements of groups Gi,
the negation of the condition implies that φ(W ) ∈ ∗i<ωHi for any reduced word
W ∈ W(Gi : i < ω), which implies φ(W ) = e. □

Since σH◦φ(∗i<ωGi) = {e}, we have a homomorphism φ :××i<ωGi/N(∗i<ωGi) →
××i<ωHi/N(∗i<ωHi) such that σH ◦ φ = φ ◦ σG.

An element of××i<ωGi/N(∗i<ωGi) is expressed as σG(W ) for a word W ∈ W(Gi :
i < ω). In particular we may restrict W to be a reduced one.

Lemma 2.2. A word W is reduced, if W | (α, β) ̸= e for each pair α < β ∈ W
satisfying that W (α),W (β) ∈ Gi0 and no letter in Gi0 appears in W | (α, β) for
some i0.

Proof. Observe that××i<ωGi
∼= Gi0 ∗××i≠i0Gi, we see every occurrence of a letter in

W remains in the reduced word of W . □

Lemma 2.3. If h : G → H is an inverse-preserving surjective map which is not a
homomorphism, then

(1) there exist a, b, c ∈ G which are not the identity such that abc ̸= e and
h(a)h(b)h(c) = e; or

(2) there exist a, b ∈ G which are not the identity such that ab ̸= e and
h(a)h(b) = e.
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Proof. In case h(e) ̸= e, we have a ∈ G such that a ̸= e and h(a) = e. Since
h(a−1) = e−1 = e, we have a2 = e. Setting b = c = a are desired ones for (1).

Otherwise, i.e. h(e) = e. Then, h(uv) ̸= h(u)h(v) implies u ̸= e and v ̸= e and
also uv ̸= e. Choose w so that h(w) = h(u)h(v). If w ̸= e, a = u, b = v, c = w−1

are desired ones for (1). Otherwise, i.e. w = e, a = u and b = v are desired ones
for (2). □

To define domains of words, we introduce some notions. The empty sequence is
denoted by ( ) and let n = {0, · · · , n − 1} for n < ω. A finite sequence is denoted
by (i0, · · · , ik) whose length is k + 1. For a finite sequence s = (i0, · · · , ik−1), let
s ∗ (j) = (i0, · · · , ik−1, j).

Theorem 2.4. Suppose that φi : Gi → Hi is an inverse preserving surjective map
for every i < ω. If there exist infinitely many i such that φi are not homomorphisms,
then φ is never injective.

Proof. Let J be the subset of ω consisting of all i such that φi are not homomor-
phisms. Enumerate J increasingly, i.e. {jk | k < ω} = J and jk < jk+1.

Let ajk , bjk ∈ Gjk or ajk , bjk , cjk ∈ Gjk which satisfy the required properties

(2) or (1) in Lemma 2.3 respectively. We define Wα ⊆ Seq(3) inductively as the
domain of W which is a tree with lexicographical ordering.

In the 0-step, if (2) in Lemma 2.3 holds for φj0 , then defineW ((0)) = aj0 ,W ((1)) =
bj0 , and otherwise, define W ((0)) = aj0 ,W ((1)) = bj0 ,W ((2)) = cj0 .

Suppose that W (s) is defined. Let m = lh(s). As in the 0-step, if (2) in
Lemma 2.3 holds for φjm , then define W (s ∗ (0)) = ajm ,W ((s ∗ (1)) = bjm , and
otherwise, define W (s ∗ (0)) = ajm ,W (s ∗ (1)) = bjm ,W (s ∗ (2)) = cjm .

We can see that W is reduced and φ(W ) = e as follows. Since for each pair
of letters indexed jk appearing in W there appear ajk+1

, bjk+1
between them and

ajk+1
bjk+1

= e, or ajk+1
, bjk+1

, cjk+1
between them and ajk+1

bjk+1
cjk+1

= e. Hence
non-empty subwords of W is not equal to e. On the other hand, for every finite
subset F of ω consider the projection to ∗i∈FHi and letters indexed by the largest
element jk in F . We see φjk(ajk), φjk(bjk) or φjk(ajk), φjk(bjk), φjk(cjk) appear
contiguously. Since φjk(ajk)φjk(bjk) = e, or φjk(ajk)φjk(bjk)φjk(cjk) = e, we can
cancel them and so on and we conclude the projectum is equal to e, which implies
φ(W ) = e.

Since W is a reduced word and there appear infinitely many letters, σG(W ) is
not the identity. Since φ(W ) = φ(W ), φ(σG(W )) = σH(φ(W )) = e. We have
shown that φ is not injective.

□

Lemma 2.5. Suppose that φi : Gi → Hi are surjective homomorphisms. Let
V ∈ W(Hi : i < ω) be a reduced word. Then, there exists a reduced word U ∈
W(Gi : i < ω) such that φ(U) ≡ V .

Proof. By the surjectivity of φi, we have U ∈ W(Gi : i < ω) such that U = V
and φi(U(α)) = V (α) for each α ∈ V , where V (α) ∈ Hi. To show that U is
reduced by contradiction, suppose that there exists a non-empty subword W of U
such that W = e. For any F ⋐ ω, WF = e where WF is a finite word such that
WF = {α ∈ W |W (α) ∈

∪
i∈F Gi \ {e}}. Since φi is a homomorphism for each i,

φ(W )F = e, which implies V is not reduced. Now, we see that U is reduced. □
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Theorem 2.6. Suppose that φi : Gi → Hi is an inverse preserving surjective map
for every i < ω. Then φ is surjective.

Proof. If almost all φi are homomorphisms, by ignoring finitely many Gi and Hi we
may assume that all φi are homomorphisms. Then, φ is surjective by Lemma 2.5.
So we deal with the case that infinitely many φi are not homomorphisms.

For a given reduced word V , we consider φ−1(V ). We cannot say it is a reduced
word in W(Gi : i ∈ I) and even φ−1(V ) ∈ W(Gi : i ∈ I), since there may appear
e in this sequence. When V (α) ∈ Hi and φi(e) = V (α), we replace e by letters
ui, vi such that ui, vi ̸= e and φ(ui)φi(vi) = V (α). This is done by the additional
condition. Let U be the obtained one. Since such α appear only finitely many
times for each i, U ∈ W(Gi : i ∈ I) and φ(U) = V . We claim the existence of a
reduced word U0 ∈ W(Gi : i ∈ I) such that φ(U0) = φ(U). Since φ(U) = V , we
have φ(U0) = V and hence φ(σG(U0)) = σH(V ).

Actually we show the following:

Suppose that φ(U) = V for U ∈ W(Gi : i < ω) and V ∈ W(Hi :
i < ω). Then, there exists a reduced word U0 ∈ W(Gi : i < ω) such
that φ(U0) = V .

We keep Lemma 2.2 in our mind and inserting reduced words W satisfying φ(W ) =
e to U . We will define Wα ∈ W(Gn : n ∈ J} for each α ∈ U such that φ(Wα) = e.
To state our proof rigorously we introduce some notions. Recall 3 = {0, 1, 2} and
5 = {0, 1, 2, 3, 4}. We construct trees consisting of finite sequence of members of 5
whose lengths are nonzero. Enumerate J\{0} increasingly, i.e. {jk | k < ω} = J\{0}
and jk < jk+1. Let ajk , bjk , cjk ∈ Gjk which satisfy the required propertied assured
by Lemma 2.3.

In the first step, i.e. the 0-th step, we consider α, β ∈ U such that U(α), U(β) ∈
G0 and α < β are contiguous, i.e. α < γ < β implies U(γ) /∈ G0. We admit β = ∞.
We constructWα ∈ W(Gj : j ∈ J) similarly toW in (2), using a, b, c ∈ Gj satisfying

abc ̸= e and φj(a)φj(b)φj(c) = e. We define Wα as a tree with lexicographical
ordering. In the 0-substep, let u be the result of multiplications of elements of
Gj0 appearing in the subword U(α, β) of U . We define Wα((0)) = a,Wα((1)) =
b,Wα((2)) = c, if abcu ̸= e and also Wα((3)) = a,Wα((4)) = b,Wα((5)) = c if
abcu = e. We move β to the place of the leftmost appearance of a letter of Gj0 in
U , if such a letter appears, and make β stay at the previous β otherwise.

Generally in the k-th substep, we let u to be the result of multiplications of
letters of G appearing in U |(α, β) and define Wα(s ∗ (0)) = ajk ,Wα(s ∗ (1)) =
bjk ,Wα(s ∗ (2)) = cjk for s satisfying lh(s) = k. In addition if ajkbjkcjku = e, we
define Wα(s ∗ (3)) = ajk ,Wα(s ∗ (4)) = bjk ,Wα(s ∗ (5)) = cjk for s which is the

largest element in Wα satisfying lh(s) = k. Then, we move β to the position of the
leftmost appearance among letters whose multiplication is u in U . If u does not
exist, then we make β stay at the previous position. In this way we define Wα. If
no letters of G0 appear in U , we do not define anything.

Now in the m-step we consider the word obtained Y deleting all letters which
do not belong to

∪m
i=0 Gi from U , i.e. picking letters in

∪m
i=0 Gi and order in the

same way as in U . We define Wα for α satisfying U(α) ∈ Gm by letting β ∈ U to
correspond to the next letter in the word in W(

∪m
i=0 Gi). We replace j0 by jm and

jk by jm+k.
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Our attaching Wα are done after the whole construction. Let U0 = {(α, s) |α ∈
U, s ∈ Wα or s = ⟨ ⟩} with the lexicographical ordering and U0(α, ⟨ ⟩) = U(α) and
U0(α, s) = Wα(s) for s ∈ Wα.

The fact that φ(U0) = V follows from φ(Wα) = e. To see that U0 is reduced,
let Y be a non-empty subword of U0. Choose m be the least natural number such
that a letter of Gm appears in Y . If there is only one letter of Gm which appears
in Y , it implies Y ̸= e. Let λ, µ ∈ Y such that λ < µ and Y (λ), Y (µ) are contigous
letters in Gm, i.e. Y (λ), Y (µ) ∈ Gm and X(ν) /∈ Gm for λ < ν < µ.

(1) If the both appear as of form U0(γ, ⟨ ⟩) for some γ, then Y (λ) and Y (µ)

are considered in the m-th step. We remark that no letters of
∪m−1

i=0 Gi appear in
Y . According to considering letters in Gjm in the substep 0 for Wα we conclude
Y |(λ, µ) ̸= e.

(2) If Y (λ) appears as of form U0(γ, s) for some γ and s ∈ Wγ and Y (µ) appears
as of form U0(δ, ⟨ ⟩) for some δ. We need to consider the remaining three cases where
Y (λ) appears as U0(γ, s) for some γ and s ∈ Wγ and Y (µ) appears as U0(δ, ⟨ ⟩) for
some δ. There exists k < m such that U(γ) ∈ Gk. By the minimality of m, no

letter in
∪m−1

i=0 Gi appears in Y . Hence β in the initial stage of the construction of
Wγ is located to the right hand side of Y (µ). Therefore, m = jk+l and β in the

substep l for γ is µ ∈ Y and by the setting for elements of Gjk+l+1
we conclude

Y (λ, µ) ̸= e.
(3) If Y (λ) appears as of form U0(γ, ⟨ ⟩) for some γ and Y (µ) appears as of form

U0(δ, s) for some δ and s ∈ Wδ. There exists k < m such that U(δ) ∈ Gk. By the
minimality of m, δ is located at the left hand side of α, i.e. δ < α in U . Since no
letters in U appear between U0(δ, ⟨ ⟩) and U0(δ, s), a contradiction occurs, i.e. this
case does not happen.

(4) If Y (λ) appears as of form U0(γ, s) for some γ and s ∈ Wγ . and Y (µ) appears

as of form U0(δ, t) for some δ and t ∈ Wδ. By the minimality of m we have γ = δ.
Since Wγ is a reduced word Y | (α, β) ̸= e.

Now we have shown that Y is reduced. □
Corollary 2.7. Let Gi and Hi be at most countable non-trivial groups. Then, there
exists a surjective homomorphism from A(Gi : i < ω) to A(Hi : i < ω).

Proof. Since G ∗ G′ is inifinite for non-trivial groups G and G′ and ××i<ω(G2i ∗
G2i+1) ∼=××i<ωGi, we may assume that Gi and Hi are infinite. Therefore we have
an inverse-preserving map from Gi to Hi for each i and hence have the conclusion
from Theorem 2.6. □

Now we have the following corollary.

Corollary 2.8. Let G and H be groups Z and Z/kZ for some k ≥ 2.

Remark 2.9. (1) G. Conner informed me that the surjectivity of homomorphisms
in the assumption of Theorem 2.4 is essential.

(2) If there are surjections between finite groups G and H, then G and H are
obviously isomorphic. There are many infinite groups for which the statement does
not hold. The author debts to M. Dugas, L. Fuchs and D. Herden for this.
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