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sequences of free groups of finite rank. Except free groups of finite
rank there exist four groups which the inverse limits of sequences
of free groups of finite rank.
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1. Introduction and main result

A continuum is a compact connected metric space. The first shape
group of one-dimensional continua are the inverse limit of free groups
of finite rank and every inverse sequence of free groups of finite rank
is a pro-π1-sequence of a one-dimensional continuum [7, p.130]. Since
the first shape group is not fine enough to distinguish topologies of
various one-dimensional continua, shape theorists have not paid much
attention to the first shape groups. On the other hand, from group
theoretic view point, it is apparently meaningful to classify the inverse
limit groups of free groups of finite rank.

The present paper carries out the classification mentioned above.
An inverse sequence (Gn, pn : n < ω) is a sequence (Gn : n < ω)
of groups together with a sequence of homomorphisms pn : Gn+1 →
Gn, where n runs through all non-negative integers. The inverse limit
lim←−(Gn, pn : n < ω) is a subgroup of the direct product {x ∈ Πn<ωGn :
pn(x(n + 1)) = x(n) for n < ω} and is often denoted by G∞. Let Zn

be a copy of the integer group Z for n < ω. For groups G0 and G1,
G0 ∗G1 is the free product of G0 and G1.
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Theorem 1.1. The inverse limit of any inverse sequence of free groups
of finite rank is isomorphic to one of the following groups (1)-(5). Con-
versely, each of the groups (1)-(5) is isomorphic to the inverse limit of
some inverse sequence of free groups of finite rank. Moreover, groups
(1)-(5) are mutually non-isomorphic.

(1) free groups of rank;
(2) lim←−(Gn, pn : n < ω) where Gn = ∗i<nZi and pn : Gn+1 → Gn is

the projection such that pn | ∗i<n Zi = id and pn(Zn) = {e};
(3) the free group of countable rank Fω;
(4) lim←−(Gn, pn : n < ω) where G0 = Fω, Gn+1 = Gn ∗ Zn and

pn : Gn+1 → Gn is the projection such that pn | Gn = id and
pn(Zn) = {e};

(5) lim←−(Gn, pn : n < ω) where G0 = Fω and Gn+1 = Gn∗Fωn where
Fωn is a copy of Fω, pn : Gn+1 → Gn is the projection such that
pn | Gn = id and pn(Fωn) = {e}.

Actually our proof classifies the limits of inverse sequence of free
groups of at most countable rank.

Corollary 1.2. For any sequence of free groups of at most countable
rank, there exists a sequence of free groups of finite rank such that the
inverse limits of these sequences are isomorphic.

If the all bonding maps pn are surjective, then by a well-known theo-
rem [6, Proposition 2.12], the limit is isomorphic to either of the groups
(1) or (2) of Theorem 1.1. Such groups are the fundamental groups of
one-dimensional Peano continua.

A subgroup R of a group G is a retract of G, if there exists a homo-
morphism r : G → R such that r(x) = x for x ∈ R. A subgroup is a
free retract of G, if it is a free group which is a retract of G. Undefined
notions are standard can be seen in [5].

2. Proofs

The proof of Theorem 1.1 is divided into three steps: (a) every inverse
limit of an inverse sequence of free groups of finite rank is isomorphic
to one of the groups listed in Theorem 1.1, (b) every group listed in
Theorem 1.1 is realized as the inverse limit of a sequence of free groups
of finite rank, (c) groups (1)-(5) in Theorem 1.1 are mutually non-
isomorphic.

For an inverse sequence (Gn, pn : n < ω), let G∞ = lim←−(Gn, pn : n <
ω) and qn : G∞ → Gn the projection. Further let qnm = pn · · · pm−1 for
n < m and Hn = qn(G∞). We adopt the same notaion for (Gi

n, pi
n :

n < ω) for i = 0, 1.
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Lemma 2.1. For an inverse sequence of groups (Gn, pn : n < ω),
(Hn, pn|Hn+1 : n < ω) is an inverse sequence with surjective bonding
maps and lim←−(Hn, pn|Hn+1 : n < ω) = G∞.

Lemma 2.2. (A consequence of [3, Theorem 6.4]). Let F0 and F1 be
free groups and h : F0 → F1 be a surjective homomorphism. Then,
there exists an injective homomorphism σ : F1 → F0 and a subgroup
F2 of F0 such that F0 = F2 ∗ σ(F1) and h ◦ σ = id and h(F2) = {e}.

Now we prove the statement (a):

Lemma 2.3. Let (Gn, pn : n < ω) be an inverse sequence of free
groups of finite rank. Then G∞ is isomorphic to one of the groups
listed in Theorem 1.1.

Proof. Since any subgroup of a free group of finite rank is a free group
of at most countable rank, we assume that every pn is surjective by
Lemma 2.1 and every Gn is a free group of at most countable rank.

First we assume that infinitely many Gn are of finite rank. By taking
a subsequence we may also assume that all Gn are of finite rank. If
almost all pn are injective, then the inverse limit is a free group of finite
rank. If infinitely many pn fail to be injective, we may assume that all pn

are non-injective. By Lemma 2.2 we have an injective homomorphism
σn : Gn → Gn+1 and a non-trivial free subgroup of finite rank Kn

such that Gn+1 = Kn ∗ σn(Gn) and pn ◦ σn is the identity on Gn. Now
(Gn, pn : n < ω) is isomorphic to a subsequence of (∗i<nZi, pn : n < ω)
in (2) of Theorem 1.1.

Next we assume that almost all Gn are of countable rank. Then we
may assume that all Gn are of countable rank. If almost all pn are
injective and hence isomorphisms, then the limit is isomorphic to a
free group of countable rank. Otherwise we may assume that all pn fail
to be injective. As is the argument in the first paragraph, we apply
Lemma 2.2 to obtain, for each n < ω, an injective homomorphism
σn : Gn → Gn+1 and a non-trivial free subgroup of at most countable
rank Kn such that Gn+1 = Kn ∗ σn(Gn) and pn ◦ σn is the identity
on Gn. If Kn are of finite rank for almost all n, then we see that
the limit is isomorphic to the group (4). Otherwise, infinitely many
Kn are of countable rank, then we conclude, by taking an appropriate
subsequence, that the inverse limit is isomorphic to the group (5). �

Next we proceed to a proof of (b). A straightforward proof of the
following lemma is provided for completeness.

Lemma 2.4. For an inverse sequence of groups (Gi
n, p

i
n : n < ω), let

(Gn, pn : n < ω) be the inverse sequence defined by Gn = G0
n ∗G1

n and
pn |Gi

n+1 = pi
n. Then we have Hn = H0

n ∗H1
n.
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Proof. Let (xn : n < ω) be an element of G∞ and fix an arbitrary n.
Let Wn ≡ wn,0 · · ·wn,kn be the reduced word of xn as an element of the
free product Gn = G0

n ∗G1
n. Note that wn,i ∈ Gj

n if and only if wn,i+1 ∈
G1−j

n . The desired conclusion is equivalent to wn,i ∈ H0
n ∪H1

n. For this
purpose, we define subwords of Um,n,i of Wm for m ≥ n inductively. Let
Un,n,i be the word of one letter wn,i For i = 0, · · · , kn, let Un+1,n,i be a
subword of Wn+1 so that pn(Un+1,n,i) = wn,i and Un+1,n,0 · · ·Un+1,n,kn ≡
Wn+1.

Suppose that Um,n,i is defined for 0 ≤ i ≤ kn. Then we have
Um,n,i ≡ wm,j0wm,j0+1 · · ·wm,j1 . Let Um,n,i be the word of the concatena-
tion Um+1,m,j0Um,j0+1 · · ·Um+1,m,j1 . Then we have pm(Um+1,n,i) = Um,n,i

and Um+1,n,0 · · ·Um+1,n,kn ≡Wm+1.
Let rj

n : G0
n ∗G1

n → Gj
n be the projection. If wn,i ∈ Gj

n,

pm(rj
m+1(Um+1,n,i)) = rj

m(pm(Um+1,n,i)) = rj
m(Um,n,i)

for m ≥ n. This means (rj
m(Um,n,i) : n < ω) is an element of Gj

∞ which
projects wn,i, which implies that wn,i ≡ Un,n,i belongs to Hj

n. �

We remark that G∞ is not isomorphic to G0
∞ ∗ G1

∞ except trivial
cases, e.g. when all G0

n are trivial groups or when all p0
n and p1

n are
injective.

Let Zi,j be copies of the integer group Z. It is easy to construct
the sequences for (1) and (2). Below we construct sequences only for
(3),(4) and (5).

Lemma 2.5. There exist inverse sequences (Gn, pn : n < ω) of free
groups of finite rank whose inverse limits are isomorphic to those of
(3), (4) and (5) respectively.

Proof. Since the commutator subgroup of the free group of rank two
is a free group of countable rank, we have an injective homomorphism
hi

n from ∗2n+2
j=2n−1Zi,j to the commutator subgroup of Zi,2n−1 ∗Zi,2n. De-

fine gi
n : ∗2(n+1)

j=1 Zi,j → ∗2n
j=1Zi,j by: gi

n | ∗
2(n−1)
j=1 Zi,j is the identity on

∗2(n−1)
j=1 Zi,j and gi

n | ∗2n+2
j=2n−1 Zi,j = hi

n for 1 ≤ n < ω. We remark that gi
0

maps Zi,1 ∗ Zi,2 to {e} and gi
n are injective for n > 0.

In order to realize the group (3), let Gn = ∗2n
j=1Z0,j and pn = g0

n

for 1 ≤ n < ω. Since each pn is injective, G∞ ∼=
∩

m>1 q1m(Gm).
Since

∩
m>1 q1m(Gm) is a subgroup of G1,

∩
m>1 q1m(Gm) is a free group

of at most countable rank. It suffices to show that it is not finitely
generated. Since

∩
m>1 q1m(Gm) ∼= ∗2n

j=1Z0,j ∗
∩

m>n qnm(∗2m
j=2n+1Z0,j),∩

m>1 q1m(Gm) has a free retract of 2n rank and hence is not finitely
generated.
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Next we proceed to realize the group(4). Let Gn = ∗2n
j=1Z0,j ∗∗nj=1Z1,j

and let pn | ∗2(n+1)
j=1 Z0,j = g0

n and pn | ∗nj=1 Z1,j to be the identity on

∗nj=1Z1,j and pn(Z1,n+1) = {e}. We apply Lemma 2.4 for G0
n = ∗2n

j=1Z0,j

and G1
n = ∗nj=1Z1,j. Obviously H1

n = ∗nj=1Z1,j and, since g0
n is injective

for n > 0, we have H0
n =

∩
m>n q0

nm(∗2m
j=1Z0,j). Here

∩
m>n q0

nm(∗2m
j=1Z0,j)

is a free group of countable rank by the above proof for (3) and hence
this inverse sequence, i.e. (Hn, pn|Hn : 1 ≤ n < ω) is the sequence of
(4) in Theorem 1.1.

Finally for the group (5), let Gn = ∗ni=0∗
2(n−i+1)
j=1 Zi,j for 1 ≤ n < ω and

let pn : Gn+1 → Gn be a homomorphism such that pn | ∗2(n−i+2)
j=1 Zi,j =

gi
n+1−i for 0 ≤ i ≤ n. We remark pn(Zn+1,1 ∗ Zn+1,2) = gn+1

0 (Zn+1,1 ∗
Zn+1,2) = {e}. We need to analyze Hn. We shall show that Hn =

∗ni=0S
i
n, where Si

n ≤ ∗
2(n−i+1)
j=1 Zi,j and Si

n is a free group of countable

rank for n ≥ i, and pn|Si
n+1 is an isomorphism for n ≥ i, which implies

the conclusion.
To show this for S0

n, we apply Lemma 2.4 for G0
n = ∗2(n+1)

j=1 Z0,j and

G1
n = ∗ni=1 ∗

2(n−i+1)
j=1 Zi,j. As in the proof of (4), we see that H0

n =

S0
n is a free group of countable rank and pn|S0

n+1 : S0
n+1 → S0

n is an
isomorphism for n ≥ 0. For S1

n we apply Lemma 2.4 to the inverse

sequence G1
n = ∗ni=1 ∗

2(n−i+1)
j=1 Zi,j instead of Gn, i.e. we consider the

new G0
n = ∗2n

j=1Z1,j and the new G1
n = ∗ni=2 ∗

2(n−i+1)
j=1 Zi,j, and conclude

that pn|S1
n+1 : S1

n+1 → S1
n is an isomorphism for n ≥ 1 and we see S1

n is
a free group of countable rank. Consequently, we have H1 = S0

1 ∗ S1
1 .

For Sk
n, we work inductively on ∗ni=k ∗

2(n−i+1)
j=1 Zi,j instead of Gn and

conclude Sk
n is a free group of countable rank and pn|Sk

n+1 → Sk
n is an

isomorpism for n ≥ k. �

Next we recall a generalization of the Higman theorem.

Lemma 2.6. [2, Theorem 1.2](Weak form)
Let (Gn, pn : n < ω) is an inverse sequence such that each pn is

surjective. For any homomorphism h from G∞ to a free group F ,
there exists an m < ω and a homomorphism h : Gm → F such that
h = h ◦ pm.

Lemma 2.7. Let (Gn, pn : n < ω) be an inverse sequence. If Rn is a
retract of Gn and rn : Gn → Rn is a retraction for each n such that
pn ◦ rn+1 = rn ◦ pn, then (Rn, pn|Rn : n < ω) is a inverse sequence and
lim←−(Rn, pn|Rn : n < ω) = R∞ is a retract of G∞.
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Proof. Define r(x)(n) = rn(x(n)) for x ∈ R∞. Then we have

p(r(x)(n+1)) = pn◦rn+1(x(n+1)) = rn◦pn(x(n+1)) = rn(x(n)) = r(x)(n)

and hence r(x) ∈ R∞ and r(x) = x for x ∈ R∞. �

Applying this lemma, we have

Lemma 2.8. Let (Gn, pn : n < ω) be an inverse sequence such that
Gn = ∗ni=0Hi and pn| ∗ni=0 Hi is the identity and pn(Hn+1) = {e}. Then
the subgroup

Gn = {x ∈ G∞ |x(k) = x(n) for k ≥ n, x(k) = qkn(x(n)) for k < n}

is a retract of G∞ and isomorphic to Gn.

We identify Gn with Gn and simply write Gn. Also we specify ρn :
G∞ → Gn to be the retraction as above.

By Lemmas 2.3 and 2.5, it suffices to show the non-isomorphicness
and particularly to show the non-isomorphicness among three uncount-
able groups (2), (4), (5). The groups (4) and (5) have a free retract of
countable rank G0 by Lemma 2.8. Now we show (2) has no free retract
of countable rank. Suppose that r : G∞ → R be a retraction to a free
retract R of countable rank. Then, by Lemma 2.6 we have an m and a
homomorphism h : Gm → R such that r = h ◦ ρm. Since Gm is finitely
generated, R is finitely generated, a contradiction.

Now what remains to be shown is the group (4) is not isomorphic to
the group (5). A proof requires an involved argument is carried out in
the next section.

Remark 2.9. As in [2, Theorem 1.2], Lemma 2.6 also holds when F
is the fundamental group of the Hawaiian earring.

3. The non-isomorphicness of the groups (4) and (5)

For a group G let Ab(G) be the abelianization of G, i.e. Ab(G) =
G/G′. For a homomorphism h : G0 → G1, let Ab(h) : Ab(G0) →
Ab(G1) be the induced homomorphism.

An abelian group A is complete mod-U, if for a given sequence an(1 ≤
n < ω) of elements of A satisfying (n+1)! | an+1−an for every 1 ≤ n < ω
there exists a∞ such that n! | a∞ − an for every 1 ≤ n < ω.

Since Z is not complete mod-U and the homomorphic image of a
complete mod-U abelian group is again complete mod-U, we have

Lemma 3.1. [1, Proposition 4.3] Let A be a complete mod-U abelian
group. Then Hom(A, Z) = {0}.
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Let Gn = ∗ni=0Hi and pn : Gn+1 → Gn be the projection such that
pn |Gn = id and pn(Hn+1) = {e}.

Let ρn : G∞ → Gn be the projections and also let rn : Gn → Hn

be the projections. Define σ : G∞ → Πn<ωAb(Hn) by σ(x)(n) =
Ab(rn(ρn(x))) for n < ω. The following lemma is a variant of [1,
Theorem 4.7] for inverse limits.

Lemma 3.2. The group Ker(σ)/G′ is complete mod-U.

Proof. We present xG′ by [x]. If x ∈ G′, then ρn(x) ∈ G′
n and x ∈

Ker(σ), i.e. we have G′ ≤ Ker(σ). Let x ∈ Ker(σ) and n < ω. Since
(∗ni=0Hi)

′ naturally becomes a subgroup of G′
∞ by Lemma 2.8, we have

y ∈ Ker(σ) such that [y] = [x] and ρn(y) = e.
Suppose that (n + 1)! | [xn+1]− [xn] for 1 ≤ n < ω. We have yn such

that y1 = x1, (n + 1)![yn+1] = [xn+1]− [xn] and ρn(yn+1) = e.
The above is rewritten as [xn] = Σn

i=1i![yi]and hence the desired
element v woulf be formally as [v] = Σ∞

i=1i![yi] but the limit procedure
should be carried out carefully so that (n + 1)! | [v] − [xn]. In order
to make as appropreate procedure, we use a tree with lexicographical
ordering to express elements in a non-commutative group.

Let Seq be the set of all finite sequences of natural numbers and
denote the length of s ∈ Seq by lh(s), i.e. s = 〈s(1), · · · , s(lh(s))〉.
The empty sequence has length 0. For s, t ∈ Seq, s ≺ t if s(i) < t(i)
for the minimal i with s(i) 6= t(i) or t extends s properly.

Let Dm,n = {s ∈ Seq : 0 ≤ lh(s) ≤ n, 1 ≤ s(i) ≤ i + m for 1 ≤
i ≤ n} and Wm,n : Dm,n → Gn with the ordering ≺ and Wm,n(s) =
ρn(ym+lh(s)). Then, under the ordering ≺, Wm,n express an element of
Gn, e.g.

W1,2 ≡ ρ2(y1)ρ2(y2)ρ2(y3)ρ2(y3)ρ2(y3)ρ2(y2)ρ2(y3)ρ2(y3)ρ2(y3)

= ρ2(y1)ρ2(y2)ρ2(y2).

Then, it is easy to see pn(Wm,n+1) = Wm,n and hence we have gm ∈ G∞
such that ρn(gm) = Wm,n.

We observe gm = ymgm+1
m+1. Hence we have

[g1] = Σn
i=1i![yi] + (n + 1)![gn+1]

and consequently (n + 1)! | [g1]− [xn]. �
Lemma 3.3. [4, Theorem 94.5] Let h : Zω → ⊕IZ be a homomorphism.
Then there exists n < ω and a homomorphism h : Zn → ⊕IZ such that
h = h ◦ ρn, where ρn : Zω → Zn is the projection.

Lemma 3.4. The abelian group Πi<ω(⊕j<ωZi,j) is a homomorphic im-
age of the group of (5), but is not a homomorphic image of the group
of (4).
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Proof. Let (Gn, pn : n < ω) be the inverse sequence of (5). Then,
Ab(pn) : Ab(Gn+1) → Ab(Gn) is a homomorphism from (⊕ωZ)n+1 to
(⊕ωZ)n such that the restriction of Ab(pn) to (⊕ωZ)n is the identity and
Ab(pn) maps the last copy of ⊕ωZ to {0}. Hence lim←−(Ab(Gn), Ab(pn) :
n < ω) is isomorphic to Πi<ω(⊕j<ωZi,j) and hence Πi<ω(⊕j<ωZi,j) is a
homomorphic image of the group of (5).

Next h be a homomorphism from G∞ to Πi<ω(⊕j<ωZi,j), where
(Gn, pn : n < ω) is the inverse sequence of (4). Since the range is a sub-
group of a direct product of copies of Z, the restriction of h to Ker(σ)
is the zero homomorphism by Lemmas 3.2 and 3.1. Hence we have a
homomorphism h : G∞/ Ker(σ) → Πi<ω(⊕j<ωZi,j). Since lim←−(Gn, pn :

n < ω)/ Ker(σ) ∼= ⊕ωZ⊕Zω, we may assume that h is a homomorphism
from ⊕ωZ⊕Zω to Πi<ω(⊕j<ωZi,j). Let ri : Πi<ω(⊕j<ωZi,j)→ ⊕j<ωZi,j

be the projection for each i. By Lemma 3.3 we have ki < ω such that
ri ◦ h(Zω) ≤ ⊕j<ki

Zi,j. Let r : Πi<ω(⊕j<ωZi,j) → Πi<ω(⊕j≥ki
Zi,j) be

the projection. Then we have r ◦ h(Zω) = {0}. Since r ◦ h(⊕ωZ) is at
most countable, we conclude that h is not surjective and consequently
h is not surjective. �

Since Lemma 3.4 implies that the group of (4) is not isomorphic to
that of (5), we have completed our proof of Theorem 1.1.
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