
SINGULAR HOMOLOGY GROUPS OF
ONE-DIMENSIONAL PEANO CONTINUA

K. EDA

Abstract. Let X be a one-dimensional Peano continuum. Then the
singular homology group H1(X) is isomorphic to a free abelian group of
finite rank or the singular homology group of the Hawaiian earring.

1. Introduction and main result

The study of singular homology of one-dimensional spaces is back to

Curtis and Fort [3]. They proved that for every one-dimensional separable

metric space X the singular homology groups Hk(X) = {0} for k ≥ 2.

A Peano continuum is a locally connected, connected, compact met-

ric space. As we have proved previously, the fundamental groups of one-

dimensional Peano continua determine their homotopy types [8], and in par-

ticular the fundamental groups of one-dimensional Peano continua which are

not semi-locally simply connected everywhere determine their homeomor-

phism types [7]. Consequently, the fundamental groups of one-dimensional

Peano continua are abundant. We recall that the Hawaiian earring is the

plane compactum

H = {(x, y) : (x− 1

n
)2 + y2 =

1

n2
: 1 ≤ n < ω}.

It is known that the singular homology group of the Hawaiian earring is

isomorphic to the abelian group

Zω ⊕⊕cQ⊕ Πp:primeAp,

where ω is the least infinite ordinal, c is the cardinality of the continuum

and Ap is the p-adic completion of the free abelian group of rank c [11,

Theorem 3.1] (see Remark 1.3).

In contrast to the case of the fundamental groups, we have
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Theorem 1.1. Let X be a one-dimensional Peano continuum. Then the

singular homology group H1(X) is isomorphic to a free abelian group of

finite rank or the singular homology group of the Hawaiian earring .

The proof shows,

Corollary 1.2. Let X be a one-dimensional Peano continuum. If X is

locally semi-simply connected, then H1(X) is isomorphic to a free abelian

group of finite rank. Otherwise, H1(X) is isomorphic to the singular homol-

ogy group of the Hawaiian earring .

The result is somewhat unexpected, because the classification is the same

as those of the Čech homology groups and and the shape groups (Čech

homotopy groups) of one-dimensional Peano continua, while that of the

fundamental groups is different, which we have mentioned above. Though

proofs for the classifications of the Čech homology groups and the shape

groups are done rather geometrically, the proof for the singular homology

groups is highly group theoretic as we show in the sequel.

As well-known, M. G. Barratt and J. Milnor [1] proved that the three di-

mensional singular homology group of the two dimensional Hawaiian earring

is non-trivial, which shows a counter-intuitive behavior of singular homol-

ogy. Our result is another counter-intuitive one even in the dimension one.

Remark 1.3. The proof of [11, Theorem 3.1] depends on [6, Lemma 4.11].

However there is a gap in the proof of [6, Lemma 4.11]. Hence we prove

Lemma 3.6 in the present paper and trace another way of proofs and gen-

eralize [11, Theorem 2.1].

2. Sequences and abelian groups

To express finite or infinite sequences of paths and elements of groups, we

introduce some notion, which we have used in [6, 5, 9]. Let Seq be the set of

all finite sequences of non-negative integers and denote the length of s ∈ Seq

by lh(s). The empty sequence is denoted by ( ). For s, t ∈ Seq, let s ∗ t be
the concatenation of s and t, i.e. lh(s∗ t) = lh(s)+ lh(t) and (s∗ t)i = si for

1 ≤ i ≤ lh(s) and (s∗t)i = ti−lh(s) for lh(s)+1 ≤ i ≤ lh(s)+lh(t). Generally

s ∈ Seq is denoted by (s1, · · ·, sn) where sk(1 ≤ k ≤ n) are non-negative

integers and n = lh(s). The lexicographical ordering is denoted by ≼, i.e.

for s, t ∈ Seq, s ≼ t if si < ti for the minimal i with si ̸= ti or t extends s.

For a non-empty sequence s ∈ Seq, let s+ ∈ Seq be the sequence such that

lh(s+) = lh(s) and s+i = si for i < lh(s) and s+i = si + 1 for i = lh(s).
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We summarize notions for abelian groups. Hence in this section a group

means an abelian group. For a group A, the Ulm subgroup U(A) of A is∩
{n!A : n < ω}. If A is torsionfree, U(A) becomes to be the divisible

subgroup D(A) of A. The divisible subgroup is a direct summand of A. A

torsionfree divisible group is the direct sum of copies of the rational group

Q.

A group A is called complete mod-U, if A/U(A) is complete [16, VII

39], i.e. for a given an ∈ A(n ∈ N) such that n! | an+1 − an, there exists an

element a such that n! | a− an for every n ∈ N.
It is known that a group A is algebraically compact, if and only if A

is complete mod-U and U(U(A)) = U(A) [4]. If A is torsionfree, then

U(A) = U(U(A)) = D(A). Hence, a torsionfree, complete mod-U group is

algebraically compact. The structure of a torsionfree algebraically compact

group is well-known and determined by cardinalities depending on primes

[16, p.169]. Let Ẑ be the Z-completion of Z [16, p. 164]. Then Ẑ ∼= Πp:primeJp,
where Jp is the p-adic integer group.

A subgroup S of a group A is pure, if, for a ∈ S, n | a in A implies n | a
in S. It is known that a group A is algebraically compact, if and only if A is

pure-injective, i.e. if A is a pure subgroup of a group B, then A is a direct

summand of B.

For a group A, RZ(A) is the subgroup
∩
{Ker(h) : h ∈ Hom(A,Z)},

which is a radical, i.e. RZ(A/RZ(A)) = {0}. It is easy to see that A/RZ(A)

is a subgroup of the direct product of copies of the integer group Z. For
undefined notions for abelian groups, we refer the reader to [16].

3. Paths in one-dimensional metric spaces and group

theoretic properties

To investigate the divisibility in H1(X) we recall reduced paths on the

line of thinking in [7].

For a ≤ b, a continuous map f : [a, b] → X is called a path from

f(a) to f(b). The points f(a) and f(b) are called the initial point and the

terminal point of f respectively. When a = b, the path f is said to be

degenerate. A loop f is a path with f(a) = f(b). For a path f : [a, b] → X,

f− denotes a path such that f−(s) = f(a+ b− s) for a ≤ s ≤ b. Two paths

f : [a, b] → X, g : [c, d] → X are equivalent, denoted by f ≡ g, if there

exists a homeomorphism φ : [a, b] → [c, d] such that φ(a) = c, φ(b) = d and

f = g ·φ. Two paths f : [a, b] → X and g : [c, d] → X are homotopic if there

exists a continuous map H whose domain is the quadrangle in the plane
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with the vertexes (a, 0), (b, 0), (c, 1) and (d, 1) such that
H(s, 0) = f(s) for a ≤ s ≤ b,
H(s, 1) = g(s) for c ≤ s ≤ d,
H((1− t)a+ tc, t) = f(a) = g(c) for 0 ≤ t ≤ 1,
H((1− t)b+ td, t) = f(b) = g(d) for 0 ≤ t ≤ 1.

The homotopy class containing a path f is denoted by [f ]. The homotopy

defined above is usually called “a homotopy relative to end points.” Since

the homotopies that appear in this paper have this property, we drop the

term “relative to end points” for simplicity.

A path f : [a, b] → X is reduced if each subloop of f is not null-

homotopic, that is, for each pair u < v with f(u) = f(v), f � [u, v] is

not null-homotopic. Note that a constant map is reduced if and only if it is

degenerate. For paths f : [a, b] → X and g : [c, d] → X with f(b) = g(c),

fg denotes the concatenation of f and g, that is, a path from [a, b+ d− c]

to X such that fg(s) = f(s) for a ≤ s ≤ b and fg(s) = g(s − b + c) for

b ≤ s ≤ b+ d− c. A loop f is cyclically reduced if ff is reduced. An arc A

between points x and y is a subspace of X which is homeomorphic to the

unit interval [0, 1] whose end points are x and y.

Lemma 3.1. [7, Lemma 2.4] Let X be a one-dimensional normal space.

Then every path is homotopic to a reduced path and the reduced path is

unique up to equivalence.

Lemma 3.2. [7, Lemma 2.5] For a reduced loop f, there exist a unique

reduced path g and a unique reduced loop h up to equivalence such that

f ≡ g−hg and h is cyclically reduced.

Lemma 3.3. [7, Lemma 2.6] Let X be a one-dimensional space. For reduced

paths f : [a, b] → X and g : [c, d] → X with f(b) = g(c), there exist unique

paths h, f ′ and g′ up to equivalence such that

• f ≡ f ′h− and g ≡ hg′;

• f ′g′ is a reduced path.

Though any path in a one-dimensional space X is homotopic to a re-

duced path (Lemma 3.1), there’s no effective reduction steps in general (see

Example 3.9). However, if f1f2 · · · fn is a path in X and each fi is a re-

duced path, we have the reduced path of f1f2 · · · fn by cancellations using

Lemma 3.3 at most n−1-times, i.e. we have a finite step reduction. For a

loop f in a space we denote the homotopy class of f by [f ] and the singular

homology class of f by [f ]h.
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Definition 3.4. A sequence of non-degenerate reduced paths f1, · · · , f2N
is of 0-form, if its concatenation f1 · · · f2N is a loop and there exist pairings

{ik, jk} (1 ≤ k ≤ m) of the index set {1, · · · , 2N} such that fik ≡ f−
jk

for

1 ≤ k ≤ N .

The word 0-form means that the concatenated loop represents the trivial

element in the singular homology group. We remark that the empty sequence

is of 0-form.

Definition 3.5. The length of a 0-form f1, · · · , f2N is N and its rank is the

cardinality of the set {i : fifi+1 is not reduced for 1 ≤ i ≤ 2N − 1}.

Lemma 3.6. Let l0 be a reduced loop in a one-dimensional space X. Then,

[ l0 ]h = 0 in H1(X) if and only if l0 is a degenerate loop or there exists a

0-form f1, · · · , f2N such that l0 ≡ f1 · · · f2N .

Proof. The if-part is clear and we show the other direction. Since any loop is

homotopic to a unique reduced loop up to the equivalence by Lemma 3.1 and

the homopotopy class of a 0-homologous loop belongs to the commutator

subgroup of the fundamental group by the Poincaré-Hurewicz theorem, it

suffices to show that any 0-homologous loop is homotopic to a reduced loop

of 0-form.

We prove the lemma by induction on the rank r and the length N where

the ordering of pairs (r,N) is lexicographical. We remark this ordering is

a wellordering, which assures our induction works. If r = 0, then the loop

of 0-form is reduced and we have the conclusion. On the other hand if

N = 1, then f1f2 is homotopic to a degenerate loop. Hence we proceed to

the induction steps.

We introduce a basic reduction of a 0-form f1, · · · , f2N0 . Suppose that

fi+1 · · · f2N0 is reduced and fi · · · f2N0 is not reduced. Let r0 be the rank of

f1, · · · , f2N0 . By Lemma 3.3 we have fi ≡ f ′
ih, fi+1 · · · f2N0 ≡ h−f ′

i+1 such

that f ′
if

′
i+1 is reduced. A basic reduction of f1, · · · , f2N0 is the following

0-form f ∗
1 , · · · f ∗

2N1
.

(Case 1) f ′
i and f ′

i+1 are not empty: We cancel hh−, replace fi and fi+1 by

f ′
i and f ′

i+1 respectively and get a 0-form f1, · · · fi−1, f
′
i , f

′
i+1, fi+2, · · · , f2N0

as f ∗
1 , · · · , f ∗

2N1
, whose rank is r0 − 1 and N1 = N0 + 1.

(Case 2) f ′
i or f

′
i+1 is empty:

(Subcase 2.1) f ′
i is empty and fi−1f

′
i+1 is reduced, or f ′

i+1 is empty and

f ′
ifi+2 is reduced:

We cancel hh−, rearrange pairings if necessary and get a 0-form f∗
1 , · · · , f ∗

2N1
.

Then, in the former case N1 = N0 − 1 or the rank is r0 − 1 according to the
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emptiness of f ′
i+1 and in the latter case N1 = N0 − 1 or the rank is r0 − 1

according to that of f ′
i .

(Subcase 2.2) Otherwise, i.e. f ′
i is empty and fi−1f

′
i+1 is not reduced, or f

′
i+1

is empty and f ′
ifi+2 is not reduced:

We get a 0-form f ∗
1 , · · · , f ∗

2N1
as in Case 2.1, whose rank is equal to or

less than r0 and N1 = N0 (actually we can conclude that the rank is r0 but

it is not necessary for our argument).

Starting from a given loop l of 0-form, we iterate basic reductions. If

the cases other than Subcase 2.2 appear we have the conclusion by induc-

tion hypothesis. Hence we show that Subcase 2.2 never continue infinitely

many times, which completes our proof of Lemma 3.6. To the contradic-

tion, suppose that Subcase 2.2 iterates infinitely many times starting from

a loop l of 0-form. Then we have an infinite sequence of 0-forms σn and

0 < an+1 < an < · · · < a1 = b1 < · · · < bn < bn+1 < 1 such that

(1) the rank and the length of σn are the same as those of σ0;

(2) (l � [0, an])(l � [bn, 1]) is the concatenation of paths in σn.

We remark (l � [an, a1])
− ≡ l � [b1, bn]). Let a∞ = inf{an : n < ∞} and

b∞ = sup{bn : n < ∞}.

In the m0-step we have N -pairings. If the two intervals of a pair are in

[0, a∞] ∪ [b∞, 1], then this pair is not changed in any m-step for m ≥ m0.

For intervals appearing in some steps, we call an interval outside, if it is

contained in [0, a∞]∪ [b∞, 1] and inside if it is contained in [a∞, b∞]. We call

an interval [c, d] overlapping, if c < a∞ < d < b∞ or a∞ < c < b∞ < d. First

we claim that an outside interval never be paired with an overlapping one.

To see this by contradiction suppose an outside interval [c0, d0] is paired

with an overlapping interval [c1, d1]. We assume c1 < a∞ < d1, since the

other case is symmetric. Once [c0, d0] and [c1, d1] are paired, infinitely many

[u, d0] are paired with some overlapping [c1, v] in some steps. This implies

that there are more than N pairs appear in some step one of whose pairs

are subintervals of [c0, d0], which is a contradiction.

Next we show that after some steps outside intervals are paired with

other outside intervals. If an outside intervals I is paired with an inside

interval, then according to disppearing of the inside intervals I is possibly

partitioned. But such partitionings for I occur only finitely many times,

since this procedure fixes the number N0 of the pairs. Now we observe a

non-degenerate subinterval I0 of I, which will not be partitioned. We claim

that I0 will be paired with an outside interval. Otherwise, I0 is paired with

infinitely many inside intervals, which implies that I0 is the degenerate path
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l(a∞) = l(b∞), a contradiction. Hence we conclude that after some steps

every outside interval is paired with another outside one.

We remark that if an overlapping interval does not appear in some step,

then it does not appear in further steps and if an overlapping interval is

paired with another overlapping interval in some step, then in further steps

two overlapping intervals are paired. Next we show that after some steps

overlapping intervals are paired with other overlapping intervals. To see this

by contradiction, suppose that an overlapping interval [c0, d0] with c0 <

a∞ < d0 < b∞ is paired with an inside interval and in further steps its

overlapping subintervals are paired with inside intervals. Then as in the case

of outside intervals there appear only finitely many subintervals of [c0, a∞]

in the further steps and hence we have an overlapping interval [c1, d1] with

c0 ≤ c1 < a∞ < d1 < d0 such that in the further steps an overlapping

interval containing a∞ is of form [c1, d] for some d ≤ d1. Since l|[c1, a∞] is

not degenerate, we have a contradiction as in the case of outside intervals.

The case a∞ < c0 < b∞ < d0 is symmetric and we omit its proof.

These imply that after some steps every inside interval is paired with

another inside interval. Now choose two points u0, u1 from an inside interval

so that l(u1) ̸= l(u2). Then we have copies of them in some inside interval at

any further steps and we have a contradiction l(u1) = l(a∞) = l(b∞) = l(u2).

Now we have completed proof of Lemma 3.6. We remark our proof implies

that the basic reductions stop in a finite step, since Subcase 2.2 never occurs

infinitely many times and other cases decrease the order of a pair (r,N). �

A family U of open subsets of a space X is of order 2, if U ∩ V ∩W = ∅
for each distinct U, V,W ∈ U . If a space X is one-dimensional, then every

finite open cover has a refinement of order 2 [15].

There is a natural homomorphism from the singular homology to the

Čech homology. Though we’ll use a result of [12] in principle, we need to

investigate the homomorphism more precisely and we present a direct pre-

sentation of the homomorphism according to [10].

For a loop l in a one-dimensional space X, we define a loop fU in the

nerve XU as follows [14].

We take a sequence 0 = t0 < t1 < · · · < tn = 1 and elements U0, · · · , Un ∈
U with the following properties:

◦ l(ti) ∈ Ui for each 0 ≤ i ≤ n and U0 = Un = xU ;

◦ l([ti, ti+1]) ⊂ Ui ∪ Ui+1 for 0 ≤ i < m.

Define lU : [0, 1] → XU as lU(ti) = Ui and extend linearly on each [ti, ti+1].

Then, such an lU is unique up to homotopy, i.e.
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(1) Take another sequence 0 = t′0 < t′1 < · · · < t′n = 1 and elements

U ′
1, · · · , U ′

n ∈ U and define a loop l ′U in XU so as to satisfy the above

two conditions. Then, lU and l ′U are homotopic.

(2) If m is a loop in X homotopic to l , then mU and lU are also homo-

topic.

The natural homomorphism σ : H1(X) → Ȟ1(X) for a path-connected

space X is defined by: ρU(σ([ l ]h)) = [lU ]h, where ρU is the projection from

Ȟ1(X) to H1(XU), and [ l ]h is the homology class containing l and [lU ]h the

homology class containing lU respectively.

For the following construction we suppose that X is a locally path-

connected metric space and U be an open cover of X consisting of path-

connected sets is of order 2. Since we use this for locally path-connected

spaces, we always use covers consisting of path-connected sets.

We use the preceding notation for a loop l in X and a cover of X. Let

U0 = {Ui : 0 ≤ i ≤ n} ⊆ U be a finite cover of Im(l) and pU0 = l(0). Choose

pU ∈ U for U ∈ U0 with U ̸= U0. Then, using the path-connectivity of U

and V we inductively define an arc AUV = AV U ⊆ U ∪ V between pU and

pV for U, V ∈ U0 with U ∩ V ̸= ∅ so that AUV is the unique arc between

pU and pV in (U ∪ V ) ∩
∪
{AUV : U, V ∈ U0}. Then

∪
{AUV : U, V ∈ U0}

is homeomorphic to a finite graph and (U ∪ V ) ∩
∪
{AUV : U, V ∈ U0}

is simply-connected for each U, V ∈ U0. We remark that pU may not be a

branching point in this finite graph and AUU is the one point set {pU}. Since
U is infinite, to avoid a tedious argument, we do not construct a graph in

X for the nerve XU .

Next we construct a loop l in the finite graph
∪
{AUV : U, V ∈ U} for a

loop l with base point U0 in the nerve XU0 , which is a finite graph, so that a

path in the edge UV corresponds to a path from pU to pV on the arc AUV .

Then we apply this construction to the above loop lU . Then lU � [ti, ti+1]

is a path from pUi
to pUi+1

on the arc AUiUi+1
and lU(0) = l(0) = l(1) = lU(1).

Lemma 3.7. Let X be a one-dimensional locally path-connected metric

space. If l is a loop such that [ l ]h ∈ Ker(σ), then l is homologous to the

sum of arbitrary small cycles. In addition, arbitrary small cycles can be

chosen in the image of l .

Proof. Let l be a loop with [ l ]h ∈ Ker(σ). For a given cover V , according
to the paracompactness of X we have a locally finite refinement V0 of V . By
Dowker’s theorem [15, 7.2.4], we have an open 2-cover V1 which refines V0.

Let U be the set of all path-connected components of some V ∈ V1. Then U
is a 2-cover consisting of path-connected open sets. Hence, for a given ε > 0
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we can choose an open 2-cover U of X which consists of path-connected

open sets with size less than ε/2. Taking sufficiently large n, according to

the preceding construction we have 0 = t0 < t1 < · · · < tn = 1, Ui ∈ U , U0,

pU for U ∈ U0, lU and lU .

Let qi be a path from pUi
to l(ti). Since [lU ]h = 0, we have a partition

of the index set {0, 1, · · · , n − 1} = {ik, jk : 1 ≤ k ≤ m} ∪ S such that

n = 2m + |S| and l � [tjk , tjk+1] = (l � [tik , tik+1])
− and Ui = Ui+1 for

each i ∈ S. We remark that this is the edge-path version of the 0-form in

Lemma 3.6. Then, lU is a null-homologous loop in X. We have

[ l ]h − [ lU ]h

= [ l ]h − [ lU ]h + Σn−1
i=1 [qi(qi)

−]h

= [(l � [t0, t1]) q1 (lU � [t0, t1])−]h
+ Σn−2

i=2 [(l � [ti, ti+1]) qi+1(lU � [ti, ti+1])
−(qi)

−]h

+ [(l � [tn−1, tn])(lU � [tn−1, tn])
−q−n ]h.

Since the homology classes of cycles in the last summations are of size less

than ε and [ lU ]h = 0, we have the conclusion.

For the additional statement, we remark that Im(l) is a Peano continuum

and every path inX is homotopic to the reduced path in its image. Thus, the

preceding proof can be done in Im(l) and we have the additional statement.

�

Lemma 3.8. Let X be a one-dimensional locally path-connected metric

space. Then RZ(H1(X)) ≤ Ker(σ) holds.

Proof. Decompose X to the path-connected components Xi (i ∈ I). Then

we have H1(X) = ⊕i∈IH1(Xi) and RZ(H1(X)) = ⊕i∈IRZ(H1(Xi)). Hence,

without loss of generality we assume that X is path-connected. To prove

RZ(H1(X)) ≤ Ker(σ) by contradiction, suppose that σ([ l ]h) ̸= 0 and [ l ]h ∈
RZ(H1(X)) for a loop l . According to the fact in the proof of Lemma 3.7,

we have a 2-cover U consisting of path-connected open sets such that 0 ̸=
[ lU ]h ∈ H1(XU). Since H1(XU) is a free abelian group, we conclude [ l ]h /∈
RZ(H1(X)), which is a contradiction. �

Example 3.9. We show the existence of a loop l which is homotopic to the

constant loop, but does not contain a non-degenerate subloop of form ff−.

We denote the clockwise winding to the i-th circle of the Hawaiian earring

H by ai. Let Seq(2) be the subset of Seq consisting of sequences of 0, 1. We

define a loop as an infinite concatenation of loops whose sizes converge to

zero. Let l = Seq(2) \ {( )} and l be the loop obtained by concatenating ai



10 K. EDA

and a−i according to the lexicographical ordering of l , i.e.

l � [Σn−1
i=1 2

−2i + Σn
i=1s(i)2

−2i+1,Σn−1
i=1 2

−2i + Σn
i=1s(i)2

−2i+1 + 2−2n] ≡ ai

if sn = 0 and

l � [Σn−1
i=1 2

−2i + Σn
i=1s(i)2

−2i+1,Σn−1
i=1 2

−2i + Σn
i=1s(i)2

−2i+1 + 2−2n] ≡ a−i

if sn = 1, where n = lh(s).

To show that l is homotopic the constant loop, let pn be the projection

of H to the bouquet Bn consisting of the first n circles. Then, pn ◦ l is a

loop in Bn and it is easy to see that pn ◦ l is null-homotopic. Then l itself is

null-homotopic [10, Thm 1]. The reason of the non-existence of a subloop of

l of form ff− follows from the fact that in l each ai and a−i have immediate

successors, but have no immediate predecessor.

The next example shows that we cannot replace the notion of the re-

ducedness of a loop in a space X with a sequence of reduced loops in the

nerves of X.

Example 3.10. We construct a reduced loop l in H such that each projec-

tion of l to Bn is not reduced for 1 ≤ n < ω. The construction is similar to

the above. Let l = Seq(2) \ {⟨ ⟩} and concatenating aiai and a−i according

to the the lexicographical ordering on l instead of concatenating ai and a−i .

The fact that pn ◦ l is not reduced can be seen as follows. Consider

the appearance of anan in pn ◦ l . Then, a−n follows immediately, i.e. there

is a subloop anana
−
n of pn ◦ l and hence pn ◦ l is not reduced. To see the

reducedness of l by contradiction suppose that a non-degenerate subloop

l ′ of l is null-homotopic. Without loss of generality we may assume that

the base point of l ′ is o. Then l ′ should be an infinite concatenation of ai.

Let n be the minimal number such that an or a−n appears in l ′. Since l ′ is

null-homotopic, the times of appearances of an and a−n are the same. In the

subloop between neighboring an and a−n , or a−n and an, an+1 appears one

time more than a−n+1 and hence l ′ is not null-homotopic. Hence, l is reduced.

4. Construction of loops

For our construction of loops and cycles we prepare some notions which

have been used in [6, 5, 9], but some modification is necessary, since we need

to treat with loops with different base points. Though such a treatment has

been done by J. Cannon and G. Conner in the proof of [2, Theorem 6.7],

their presentation is not sufficiently precise to prove the next lemma. To

prove it an exact presentation on the line as that we have done in the

previous section is preferable, and we follow the line in [6, 5, 9].
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Suppose that natural numbers ki are given. Let S = {s ∈ Seq : 0 ≤
si < ki for 1 ≤ i ≤ lh(s)} and for s ∈ S let as = Σ

lh(s)
i=1 si/Π

i
j=1kj. Next

let T = {t ∈ Seq : 0 ≤ ti < (i + 1)ki for 1 ≤ i ≤ lh(t)}. Let Sm =

{s ∈ S : lh(s) = m} and Tm = {t ∈ T : lh(t) = m}. For t ∈ Seq with

0 ≤ ti < (i+ 1)ki, define st, ct ∈ Seq with lh(st) = lh(ct) = lh(t) by:

(i+ 1)(st)i + (ct)i = ti, 0 ≤ (st)i < ki, 0 ≤ (ct)i < i+ 1.

Let

bt = Σ
lh(t)
i=1 ((3i+ 2)(st)i + (ct)i + 1)/Πi

j=1(3j + 2)kj

= Σ
lh(t)
i=1 (3ti − (st)i + 1)/Πi

j=1(3j + 2)kj

and εm = 1/Πm
i=1(3i + 2)ki. If (ct)lh(t) < lh(t) = m for t ∈ T , then we have

t+ ∈ T and bt+ = bt +3εm. But, if (ct)lh(t) = lh(t) = m, then bt +3εm is not

equal to any bt′ for t
′ ∈ T . We remark that as ≤ as′ if and only if s ≼ s′ for

s, s′ ∈ S and bt ≤ bt′ if and only if t ≼ t′ for t, t′ ∈ T .

Let f : [0, 1] → X be a path.

(*) Suppose that we are given finite open covers Un of Im(f)

such that each U ∈ Un is path-connected, the diameter of

each U ∈ Un is less than 1/n, and Un+1 is a refinement of

Un, and also suppose that Us ∈ Ulh(s) and kn are chosen as

f([as, as+ ]) ⊆ Us and Ut ⊆ Us for s ≺ t.

Let ls be a loop in Us ∈ Ulh(s) with the base point f(as) for s ∈ S with

lh(s) = n. Let αm+1 = Σm
i=1Σs∈Si

(i + 1)! [ls]h + α1 in H1(X) for m ≥ 1.

Our purpose is to define a path g along f so that g · f− is a loop and

(m+ 1)! | [g · f−]h + α1 − αm for each m ∈ N.
For t ∈ Tm, define g � [bt, bt − εm] ≡ lst and for t ∈ T with lh(t) = m

and 0 ≤ (ct)m < m, define g � [bt + εm, bt + 2εm] ≡ (f � [ast , as+t ])
−. If we

define these for t ∈ T for lh(t) ≤ m, the parts in [0, 1] where we have not

defined are
∪

t∈Tm
(bt, bt + εm) ∪ {1}. For t satisfying ti = (i+ 1)(ki − 1) + i

(for 1 ≤ i ≤ m = lh(t)), we have bt + εm = 1. If g(x) is defined for

x ∈ (bt, bt+ εm), then g(x) ∈ Ust . Hence g uniquely extends to a continuous

map on [0, 1], which we also denote by g. Now g is a path from f(0) to f(1)

and hence gf− is a loop. We’ll show that

[gf−]h − Σm−1
i=1 Σs∈Si

(i+ 1)! [ls]h

is divided by (m+ 1)!.
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For a fixed 1 ≤ m < ω, we cut g into finitely many pieces and consider

an element of the chain group:

Σm−1
i=1 Σt∈Ti

g � [bt − εi, bt] + Σm−1
i=1 Σt∈Ti,0≤(ct)i<i g � [bt + εi, bt + 2εi]

+ Σt∈Tm g � [bt, bt + εm].

We see that g � [bt − εi, bt] ≡ lst is a loop if lh(t) = i and g � [bt, bt + 2εi]

is also a loop if lh(t) = i and 0 ≤ (ct)i < i.

For s ∈ Sm, let Tm,s = {t ∈ Tm : st = s}. For t ∈ Tm, define t∗ so that

t = t∗ ∗ (tlh(t∗)+1, · · · , tm), (ct)lh(t∗) < lh(t∗), and (ct)i = i for lh(t∗) < i ≤ m.

We remark that, t∗ = t if and only if (ct)m < m, and, t∗ = ( ) if and only if

(ct)i = i for 1 ≤ i ≤ m.

Since g � [bt, bt + εm] is determined only by st, if st = st′ , then g �
[bt, bt + εm] ≡ g � [bt′ , bt′ + εm] for t, t

′ ∈ Tm.

If t∗ = t′∗ for distinct t, t′ ∈ Tm, then st ̸= st′ . Hence the correspondence

from t to st on {t ∈ Tm : t∗ = u} is one to one for u ∈
∪m

i=1 Ti with

u(lh(u)) < lh(u) or for u = ( ). In addition, for u ∈
∪m

i=1 Ti with u(lh(u)) <

lh(u), we have g � [bu + εlh(u), bu + 2εlh(u)] ≡ (f � [asu , a
+
su ])

− and, for

t ∈ Tm with t∗ = ( ), we have a corresponding subpath in f− with which

g � [bt, bt + εm] forms a loop.

Let Cm = {t ∈ Tm : (ct)i = i for 1 ≤ i ≤ m}. Since |{t ∈ Tm : st = s}| =
(m+ 1)! for s ∈ Sm, we have

[gf−]h = Σm−1
i=1 Σs∈Si

(i+ 1)! [ls]h

+Σs∈Sm(m+ 1)!βs,

where βs = [g � [bt, bt + εm](f � [as, a+s ])−]h for t ∈ Cm with st = s.

Hence, we have [gf−]h + α1 − αm = Σs∈Sm(m+ 1)!βs and [gf−]h + α1 is

the desired one.

Lemma 4.1. Let X be a one-dimensional Peano continuum. Then Ker(σ)

is complete mod-U.

Proof. Let αm ∈ Ker(σ) and αm ∈ Ker(σ) and (m + 1)! | αm+1 − αm in

Ker(σ) for 1 ≤ m < ω. Then we have γm ∈ Ker(σ) such that (m+ 1)! γm =

αm+1 − αm.

Let f : [0, 1] → X be a path such that Im(f) = X and Um be finite

open covers of X such that each U ∈ Um is path-connected, the diameter

of each U ∈ Um is less than 1/m and Um+1 is a refinement of Um. To use

the preceding construction, we inductively choose km in the following way.

First km should be large so that for each s ∈ S with lh(s) = m there exits

U ∈ Um with f([as, as+ ]) ⊆ U . By Lemma 3.7 γm can be expressed as the



SINGULAR HOMOLOGY GROUPS OF ONE-DIMENSIONAL CONTINUA 13

sum of homology classes of arbitrary small loops. We want loops in some

U ∈ Um, hence the number of loops might be large. Second km should be

large so that γm is expressed by km loops each of which is in some U ∈ Um.

Hence we choose km which satisfies the two conditions. Since each U ∈ Um

is path-connected, a sum of homology classes of loops in U can be replaced

by a homologous loop in U . Hence we have Us ∈ Ulh(s) and loops ls in Us

with base point f(as) so that

γm = Σlh(s)=m[ls]h.

Then we have αm+1 = Σm
i=1Σs∈Si

(i+1)! [ls ]h +α1 in H1(X) for m ≥ 1. Now,

the assumptions for the preceding construction are satisfied and we have

the desired element [gf−]h + α1. �

Lemma 4.2. [11, Theorem 2.1] Let X be a one-dimensional normal space.

Then H1(X) is torsionfree.

Now, according to the facts in Section 2 Lemmas 4.1 and 4.2 imply

Lemma 4.3. Let X be a one-dimensional Peano continuum. Then Ker(σ)

is algebraically compact.

Lemma 4.4. (Folklore) Let X be a one-dimensional Peano continuum. If

X is semi-locally simply connected, then the Čech homology group Ȟ1(X)

is isomorphic to a free abelian group of finite rank. Otherwise, Ȟ1(X) is

isomorphic to Zω.

Next we construct loops whose homotopy classes are in Ker(σ) and

the homology classes which generate pure subgroups of H1(X) when X is

not locally semi-simply connected. Suppose that X is not locally simply

connected at x0 ∈ X.

First lemma is well-known and it can be proved using arbitrarily small

simple closed curves and we omit its proof.

Lemma 4.5. Let X be a one-dimensional space Peano continuum which is

not semi-locally simply-connected at x0. Then there exists a closed subspace

Y such that (Y, x0) is homotopy equivalent to the Hawaiian earring (H, o).

Then we have a dendrite D in Y such that Y \D consists of countable

open arcs An which converge to x0 by [7, Theorem 1.2] with its proof.

We construct certain reduced loops in Y . Let ln be a reduced loop which

starts from x0, reach a one end of An in D, goes through An and goes back

to x0 in D. We call this direction of An to be plus and the reverse direction

to be minus.
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Let l∗n be the reduced loop of l2nl2n+1l
−
2nl

−
2n+1, i.e l∗n goes plus A2n, plus

A2n+1, minus A2n and minus A2n+1 when we disregard D. We call this

last property (∗n) for simplicity. Moreover, the reduced loops of l∗0 · · · l∗m for

m ≥ n also has this property (∗n). Let l∗ be the reduced loop of the infinite

concatenation l∗0 · · · l∗n · · · . Then we see that, for each δ > 0, l∗ � [1−δ, 1] has

the property (∗n) for sufficiently large n and for each n there exists δ > 0

such that l∗ � [0, 1− δ] has the property (∗n). We remark that l∗− has not

the property (∗n).
For a non-degenerate path f : [0, 1] → X, a tail of f is a subpath

f � [1− δ, 1] for some δ > 0. The following lemma is straightforward and we

omit its proof.

Lemma 4.6. Let f0 · · · fk be a reduced path. There exists a tail m0 of l∗

such that every subpath m in f0 · · · fk which is equivalent to m0 or m−
0 is a

subpath of some fi.

Lemma 4.7. The homology class [l∗]h generates a pure subgroup of H1(X)

which is isomorphic to Z.

Proof. Since H1(X) is torsionfree, it is sufficient to show that [l∗]h is not

divided by any n ≥ 2. To show by contradiction, suppose that [l∗]h is

divided by some n ≥ 2. Then we have a cyclically reduced loop l and a

reduced path such that plp− is a reduced with base point x0 and l∗plnp− is

of 0-form among paths in X. We argue dividing to cases.

(Case 1) p is degenerate and l∗ln is reduced:

We have l∗ln ≡ f1 · · · fk where f1, · · · , fk are paired forming 0-form. By

Lemma 4.6 we have a tail m0 which satisfies the property in the lemma

for l∗l · · · l and f1 · · · fk under these presentations. Then the number of

occurrences of m0 is the same as that of m−
0 in f1 · · · fk. Let a+ be the

number of occurrences of m0 in l and a− be the number of occurrences of

m0 in l . Then we have na+ + 1 = na− and hence n(a− − a+) = 1, which

contradicts n ≥ 2.

(Case 2) p is non-degenerate and l∗plnp− is reduced:

We choosem0 similarly to Case 1 considering p and p−. Since the number

of occurrences of m0 in p is the same as that of m−
0 in p− and that of m−

0

in p is the same as that of m0 in p−, we have a contradiction as in Case 1.

(Case 3) p is degenerate and l∗ln is not reduced:

Since there is a tail t of l∗ such that t− is a a head of l , the reduced

loop of l∗ln of the form q0q2l
n−1 where q0q1 ≡ l∗ and q1q2 ≡ l . Using

the presentation q0q2q1 · · · q1q2 and the 0-form, we choose m0. Let a+ be
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the number of occurrences of m0 in l ≡ q1q2 and a− be the number of

occurrences of m0 in l as before. Since m−
0 occurs once in q1 and m0 does

not, we have n− 1 + n(a+ − 1) = na− and hence n(a+ − a−) = 1, which is

a contradiction.

(Case 4) p is non-degenerate and l∗plnp− is not reduced: For a sufficiently

small tail m0 of l
∗, we have q0m0 ≡ l∗ and m−

0 p0 ≡ p. Then in the reduction

of q0p0l
np−0 m0 any tail of l or its inverse is canceled. Hence we have a

contradiction as in (Case 2). �

Lemma 4.8. Let X be a one-dimensional normal space. If Y is a path-

connected subspace of X, then H1(Y ) is a subgroup of H1(X).

Proof. Since every element of H1(Y ) is a homology class of a loop in Y , we

let l to be a reduced loop in Y . We only deal with the case that l is non-

degenerate. Since the reduced loop of a loop is in the image of the original

loop, the reducedness does not depend on whether we consider in X or in

Y . Suppose that the homotopy class of l belongs to a commutator subgroup

of π1(X). Then l is equivalent to a 0-form where each paths are generally

in X, but Lemma 3.6 implies that each path is in Y . Therefore, H1(Y ) is a

subgroup of H1(X). �

Proof of Theorem 1.1. Let h : H1(X) → Z be a homomorphism. By

lemma 4.1 we have h(Ker(σ)) = {0} and consequently by Lemma 3.8 we

have Ker(σ) = RZ(H1(X)). Therefore H1(X)/Ker(σ) is a subgroup of the

direct product of copies of Z, which is obviously torsionfree. By Lemma 4.3

this implies that Ker(σ) is a direct summand. If X is semi-locally simply-

connected, then it is well-known that H1(X) is a free abelian group of finite

rank. Otherwise, we have Ȟ1(X) ∼= Zω and hence H1(X) ∼= Ker(σ) ⊕ Zω.

Since there exists a subspace of X which is homotopy equivalent to the

Hawaiian earring H, the divisible part D(H1(X)) contains D(H1(H)) ∼=
⊕cQ by Lemma 4.8. Since the cardinality of H1(X) is equal to or less than

c, we have D(H1(X)) ∼= ⊕cQ. The remaining task is to determine the

cardinality about reduced algebraically compact group.

Since σ([l∗]h) = 0 for l∗ in Lemma 4.7, we see [l∗]h generates a pure sub-

group ofKer(σ). To show thatKer(σ) contains a pure subgroup isomorphic

to a free abelian group of the continuum rank we modify the construction

of l∗ as in the proof of [11, Lemma 3.5]. There exists an almost disjoint

family consisting of infinite sets of integers, where S and T is almost dis-

joint if S ∩ T is finite. Let l∗S be the reduced loop of l∗i0 · · · l
∗
in · · · , where

i0 < · · · < in < · · · is the enumeration of S in the order of the integers.
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Now it suffices to show that l∗S1
, · · · , l∗Sn

is linearly independent for an al-

most disjoint family S1, · · · , Sn. We have a finite set F of integers such that

Si ∩ Sj ⊆ F for distinct i, j. For a set S of integers let rS : Y → Y be a

retraction such that rS(An) ⊆ D for n /∈ S and rS � An is the identity for

n ∈ S. Let λ1[l
∗
S1
]h + · · · + λn[l

∗
Sn
]h = 0. By Lemma4.8, we may work in Y .

Let S = Si \ F . Since (rS)∗([l
∗
Sj
) is trivial for j ̸= i but S ̸= ∅ and H1(X) is

torsionfree, (rS)∗([l
∗
Si
]h) is non-zero and hence λi = 0. �

Remark 4.9. Here we show that the compactness of a space is essential for

the algebraical compactness of Ker(σ) in Lemma 4.3. Let X be a subspace

of the plane obtained by attaching copies of H on the half line {0}× [0,∞),

i.e.

X = {0} × [1,∞) ∪

{(x, y) : (x− 1

n
)2 + (y −m)2 =

1

n2
: 3 ≤ n < ω, 1 ≤ m < ω}.

Then X is locally path-connected, path-connected, separable metric space.

In the m-th copy of the Hawaiian earring, we have a non-trivial element αm

in Ker(σ) such that ⟨[αm]h⟩ is a pure subgroup of H1(X), where σ is the

natural homomorphism to the Čech homology group. Then we have

(m+ 1)! | Σm+1
i=1 i ! [αi]h − Σm

i=1i ! [αi]h.

Suppose that Ker(σ) is algebraically compact. Then we have a loop l such

that (m+ 1)! | [ l ]h − Σm
i=1i ! [αi]h for each 1 ≤ m < ω. Since the image of l

is compact, we have m0 such that

Im(l) ⊆ {0} × [1,m0 − 1] ∪

{(x, y) : (x− 1

n
)2 + (y −m)2 =

1

n2
: 3 ≤ n < ω, 1 ≤ m ≤ m0 − 1}.

Considering the retraction of X to

{(x, y) : (x− 1

n
)2 + (y −m0)

2 =
1

n2
: 3 ≤ n < ω},

we conclude (m0 + 1)! | −m0![αm0 ]h. Since H1(X) is torsionfree, we have

m0 + 1 | [αm0 ]h, which contradicts that ⟨[αm0 ]h⟩ is a pure subgroup.

Though Ker(σ) may not be algebraically compact for a non-compact

space X, we have the following.

Theorem 4.10. Let X be a one-dimensional locally path-connected metric

space. Then Ker(σ) = RZ(H1(X)).

Proof. By lemma 3.8 it suffices to show that Ker(σ) ≤ RZ(H1(X)). Since

each path-connected component is open by the local path-connectivity, the
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Čech homology group is the direct product of the Čech homology groups

of path-connected components. Hence without loss of generality we may

assume that X is path-connected. Let l be a loop with [ l ]h ∈ Ker(σ) and

h : H1(X) → Z be a homomorphism. We define a map φ : Ẑ → Ker(σ)

such that h ◦ φ becomes to be a homomorphism. For u ∈ Ẑ, i.e. u =

Σ∞
i=1m ! am where 0 ≤ am ≤ m, we define a loop lu as follows. We modify

the construction in the proof of Lemma 4.1. Replace f by l and for each am

we express am[ l ]h as the sum of homology classes of loops each of which is

in some U ∈ Um. Then we have a loop lu such that

(m+ 1)! | [lu]h − Σm
i=1i ! ai[ l ]h.

Let φ(u) = [lu]h. For u, v ∈ Ẑ, let u = Σ∞
i=1i ! ai, v = Σ∞

i=1i ! bi and u + v =

Σ∞
i=1i ! ci where 0 ≤ ai, bi, ci ≤ i. Since

(m+ 1)! | Σm
i=1i ! ci − (Σm

i=1i ! ai + Σm
i=1i ! bi),

we have

(m+ 1)! | h([lu+v]h)− (h([lu]h + h([lv]h))

for every m and hence h ◦ φ(u + v) = h ◦ φ(u) + h ◦ φ(v). Since Z is

cotorsionfree, h ◦ φ is a trivial homomorphism, which implies h([ l ]h) =

h ◦ φ(1) = 0. �

Remark 4.11. According to Theorem 1.1 H1(X)/RZ(H1(X)) is isomor-

phic to a free abelian group of finite rank or Zω. Even for one-dimensional

locally path-connected separable metric spaces X, H1(X)/RZ(H1(X)) are

abundant. For this we refer the reader to [13, Section 6], we defined a factor

HT
n (X) of the singular homology group Hn(X) and in our case HT

1 (X) ∼=
H1(X)/RZ(H1(X)) holds. There we see the abundance of HT

1 (X). The

spaces defined there are not metrizable, but by a standard method inducing

metrizable topology we have metrizable spaces X with the same H1(X) and

HT
1 (X).
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