SINGULAR HOMOLOGY GROUPS OF ONE-DIMENSIONAL PEANO CONTINUA

K. EDA

Abstract

Let X be a one-dimensional Peano continuum. Then the singular homology group $H_{1}(X)$ is isomorphic to a free abelian group of finite rank or the singular homology group of the Hawaiian earring.

1. Introduction and main result

The study of singular homology of one-dimensional spaces is back to Curtis and Fort [3]. They proved that for every one-dimensional separable metric space X the singular homology groups $H_{k}(X)=\{0\}$ for $k \geq 2$.

A Peano continuum is a locally connected, connected, compact metric space. As we have proved previously, the fundamental groups of onedimensional Peano continua determine their homotopy types [8], and in particular the fundamental groups of one-dimensional Peano continua which are not semi-locally simply connected everywhere determine their homeomorphism types [7]. Consequently, the fundamental groups of one-dimensional Peano continua are abundant. We recall that the Hawaiian earring is the plane compactum

$$
\mathbb{H}=\left\{(x, y):\left(x-\frac{1}{n}\right)^{2}+y^{2}=\frac{1}{n^{2}}: 1 \leq n<\omega\right\} .
$$

It is known that the singular homology group of the Hawaiian earring is isomorphic to the abelian group

$$
\mathbb{Z}^{\omega} \oplus \oplus_{\mathbf{c}} \mathbb{Q} \oplus \Pi_{p: \text { prime }} A_{p},
$$

where ω is the least infinite ordinal, \mathbf{c} is the cardinality of the continuum and A_{p} is the p-adic completion of the free abelian group of rank $\mathbf{c}[11$, Theorem 3.1] (see Remark 1.3).

In contrast to the case of the fundamental groups, we have

[^0]Theorem 1.1. Let X be a one-dimensional Peano continuum. Then the singular homology group $H_{1}(X)$ is isomorphic to a free abelian group of finite rank or the singular homology group of the Hawaiian earring .

The proof shows,
Corollary 1.2. Let X be a one-dimensional Peano continuum. If X is locally semi-simply connected, then $H_{1}(X)$ is isomorphic to a free abelian group of finite rank. Otherwise, $H_{1}(X)$ is isomorphic to the singular homology group of the Hawaiian earring .

The result is somewhat unexpected, because the classification is the same as those of the Čech homology groups and and the shape groups (Čech homotopy groups) of one-dimensional Peano continua, while that of the fundamental groups is different, which we have mentioned above. Though
 groups are done rather geometrically, the proof for the singular homology groups is highly group theoretic as we show in the sequel.

As well-known, M. G. Barratt and J. Milnor [1] proved that the three dimensional singular homology group of the two dimensional Hawaiian earring is non-trivial, which shows a counter-intuitive behavior of singular homology. Our result is another counter-intuitive one even in the dimension one.

Remark 1.3. The proof of [11, Theorem 3.1] depends on [6, Lemma 4.11]. However there is a gap in the proof of [6, Lemma 4.11]. Hence we prove Lemma 3.6 in the present paper and trace another way of proofs and generalize [11, Theorem 2.1].

2. Sequences and abelian groups

To express finite or infinite sequences of paths and elements of groups, we introduce some notion, which we have used in $[6,5,9]$. Let $S e q$ be the set of all finite sequences of non-negative integers and denote the length of $s \in S e q$ by $l h(s)$. The empty sequence is denoted by (). For $s, t \in S e q$, let $s * t$ be the concatenation of s and t, i.e. $\operatorname{lh}(s * t)=\operatorname{lh}(s)+\operatorname{lh}(t)$ and $(s * t)_{i}=s_{i}$ for $1 \leq i \leq l h(s)$ and $(s * t)_{i}=t_{i-l h(s)}$ for $l h(s)+1 \leq i \leq l h(s)+l h(t)$. Generally $s \in S e q$ is denoted by $\left(s_{1}, \cdots, s_{n}\right)$ where $s_{k}(1 \leq k \leq n)$ are non-negative integers and $n=l h(s)$. The lexicographical ordering is denoted by \preceq, i.e. for $s, t \in S e q, s \preceq t$ if $s_{i}<t_{i}$ for the minimal i with $s_{i} \neq t_{i}$ or t extends s. For a non-empty sequence $s \in S e q$, let $s^{+} \in S e q$ be the sequence such that $\operatorname{lh}\left(s^{+}\right)=\operatorname{lh}(s)$ and $s_{i}^{+}=s_{i}$ for $i<l h(s)$ and $s_{i}^{+}=s_{i}+1$ for $i=\operatorname{lh}(s)$.

We summarize notions for abelian groups. Hence in this section a group means an abelian group. For a group A, the Ulm subgroup $U(A)$ of A is $\bigcap\{n!A: n<\omega\}$. If A is torsionfree, $U(A)$ becomes to be the divisible subgroup $D(A)$ of A. The divisible subgroup is a direct summand of A. A torsionfree divisible group is the direct sum of copies of the rational group \mathbb{Q}.

A group A is called complete mod- U, if $A / U(A)$ is complete [16, VII 39], i.e. for a given $a_{n} \in A(n \in \mathbb{N})$ such that $n!\mid a_{n+1}-a_{n}$, there exists an element a such that $n!\mid a-a_{n}$ for every $n \in \mathbb{N}$.

It is known that a group A is algebraically compact, if and only if A is complete mod-U and $U(U(A))=U(A)$ [4]. If A is torsionfree, then $U(A)=U(U(A))=D(A)$. Hence, a torsionfree, complete mod-U group is algebraically compact. The structure of a torsionfree algebraically compact group is well-known and determined by cardinalities depending on primes $\left[16\right.$, p.169]. Let $\widehat{\mathbb{Z}}$ be the \mathbb{Z}-completion of $\mathbb{Z}\left[16\right.$, p. 164]. Then $\widehat{\mathbb{Z}} \cong \Pi_{p: p r i m e ~} \mathbb{J}_{p}$, where \mathbb{J}_{p} is the p-adic integer group.

A subgroup S of a group A is pure, if, for $a \in S, n \mid a$ in A implies $n \mid a$ in S. It is known that a group A is algebraically compact, if and only if A is pure-injective, i.e. if A is a pure subgroup of a group B, then A is a direct summand of B.

For a group $A, R_{\mathbb{Z}}(A)$ is the subgroup $\bigcap\{\operatorname{Ker}(h): h \in \operatorname{Hom}(A, \mathbb{Z})\}$, which is a radical, i.e. $R_{\mathbb{Z}}\left(A / R_{\mathbb{Z}}(A)\right)=\{0\}$. It is easy to see that $A / R_{\mathbb{Z}}(A)$ is a subgroup of the direct product of copies of the integer group \mathbb{Z}. For undefined notions for abelian groups, we refer the reader to [16].

3. Paths in one-dimensional metric spaces and group THEORETIC PROPERTIES

To investigate the divisibility in $H_{1}(X)$ we recall reduced paths on the line of thinking in [7].

For $a \leq b$, a continuous map $f:[a, b] \rightarrow X$ is called a path from $f(a)$ to $f(b)$. The points $f(a)$ and $f(b)$ are called the initial point and the terminal point of f respectively. When $a=b$, the path f is said to be degenerate. A loop f is a path with $f(a)=f(b)$. For a path $f:[a, b] \rightarrow X$, f^{-}denotes a path such that $f^{-}(s)=f(a+b-s)$ for $a \leq s \leq b$. Two paths $f:[a, b] \rightarrow X, g:[c, d] \rightarrow X$ are equivalent, denoted by $f \equiv g$, if there exists a homeomorphism $\varphi:[a, b] \rightarrow[c, d]$ such that $\varphi(a)=c, \varphi(b)=d$ and $f=g \cdot \varphi$. Two paths $f:[a, b] \rightarrow X$ and $g:[c, d] \rightarrow X$ are homotopic if there exists a continuous map H whose domain is the quadrangle in the plane
with the vertexes $(a, 0),(b, 0),(c, 1)$ and $(d, 1)$ such that

$$
\begin{cases}H(s, 0)=f(s) & \text { for } a \leq s \leq b \\ H(s, 1)=g(s) & \text { for } c \leq s \leq d, \\ H((1-t) a+t c, t)=f(a)=g(c) \text { for } 0 \leq t \leq 1 \\ H((1-t) b+t d, t)=f(b)=g(d) \quad \text { for } 0 \leq t \leq 1\end{cases}
$$

The homotopy class containing a path f is denoted by $[f]$. The homotopy defined above is usually called "a homotopy relative to end points." Since the homotopies that appear in this paper have this property, we drop the term "relative to end points" for simplicity.

A path $f:[a, b] \rightarrow X$ is reduced if each subloop of f is not nullhomotopic, that is, for each pair $u<v$ with $f(u)=f(v), f \upharpoonright[u, v]$ is not null-homotopic. Note that a constant map is reduced if and only if it is degenerate. For paths $f:[a, b] \rightarrow X$ and $g:[c, d] \rightarrow X$ with $f(b)=g(c)$, $f g$ denotes the concatenation of f and g, that is, a path from $[a, b+d-c]$ to X such that $f g(s)=f(s)$ for $a \leq s \leq b$ and $f g(s)=g(s-b+c)$ for $b \leq s \leq b+d-c$. A loop f is cyclically reduced if $f f$ is reduced. An arc A between points x and y is a subspace of X which is homeomorphic to the unit interval $[0,1]$ whose end points are x and y.

Lemma 3.1. [7, Lemma 2.4] Let X be a one-dimensional normal space. Then every path is homotopic to a reduced path and the reduced path is unique up to equivalence.

Lemma 3.2. [7, Lemma 2.5] For a reduced loop f, there exist a unique reduced path g and a unique reduced loop h up to equivalence such that $f \equiv g^{-} h g$ and h is cyclically reduced.

Lemma 3.3. [7, Lemma 2.6] Let X be a one-dimensional space. For reduced paths $f:[a, b] \rightarrow X$ and $g:[c, d] \rightarrow X$ with $f(b)=g(c)$, there exist unique paths h, f^{\prime} and g^{\prime} up to equivalence such that

- $f \equiv f^{\prime} h^{-}$and $g \equiv h g^{\prime}$;
- $f^{\prime} g^{\prime}$ is a reduced path.

Though any path in a one-dimensional space X is homotopic to a reduced path (Lemma 3.1), there's no effective reduction steps in general (see Example 3.9). However, if $f_{1} f_{2} \cdots f_{n}$ is a path in X and each f_{i} is a reduced path, we have the reduced path of $f_{1} f_{2} \cdots f_{n}$ by cancellations using Lemma 3.3 at most n-1-times, i.e. we have a finite step reduction. For a loop f in a space we denote the homotopy class of f by $[f]$ and the singular homology class of f by $[f]_{h}$.

Definition 3.4. A sequence of non-degenerate reduced paths $f_{1}, \cdots, f_{2 N}$ is of 0 -form, if its concatenation $f_{1} \cdots f_{2 N}$ is a loop and there exist pairings $\left\{i_{k}, j_{k}\right\}(1 \leq k \leq m)$ of the index set $\{1, \cdots, 2 N\}$ such that $f_{i_{k}} \equiv f_{j_{k}}^{-}$for $1 \leq k \leq N$.

The word 0 -form means that the concatenated loop represents the trivial element in the singular homology group. We remark that the empty sequence is of 0 -form.

Definition 3.5. The length of a 0 -form $f_{1}, \cdots, f_{2 N}$ is N and its rank is the cardinality of the set $\left\{i: f_{i} f_{i+1}\right.$ is not reduced for $\left.1 \leq i \leq 2 N-1\right\}$.

Lemma 3.6. Let l_{0} be a reduced loop in a one-dimensional space X. Then, [$\left.l_{0}\right]_{h}=0$ in $H_{1}(X)$ if and only if l_{0} is a degenerate loop or there exists a 0 -form $f_{1}, \cdots, f_{2 N}$ such that $l_{0} \equiv f_{1} \cdots f_{2 N}$.

Proof. The if-part is clear and we show the other direction. Since any loop is homotopic to a unique reduced loop up to the equivalence by Lemma 3.1 and the homopotopy class of a 0 -homologous loop belongs to the commutator subgroup of the fundamental group by the Poincaré-Hurewicz theorem, it suffices to show that any 0-homologous loop is homotopic to a reduced loop of 0 -form.

We prove the lemma by induction on the rank r and the length N where the ordering of pairs (r, N) is lexicographical. We remark this ordering is a wellordering, which assures our induction works. If $r=0$, then the loop of 0 -form is reduced and we have the conclusion. On the other hand if $N=1$, then $f_{1} f_{2}$ is homotopic to a degenerate loop. Hence we proceed to the induction steps.

We introduce a basic reduction of a 0 -form $f_{1}, \cdots, f_{2 N_{0}}$. Suppose that $f_{i+1} \cdots f_{2 N_{0}}$ is reduced and $f_{i} \cdots f_{2 N_{0}}$ is not reduced. Let r_{0} be the rank of $f_{1}, \cdots, f_{2 N_{0}}$. By Lemma 3.3 we have $f_{i} \equiv f_{i}^{\prime} h, f_{i+1} \cdots f_{2 N_{0}} \equiv h^{-} f_{i+1}^{\prime}$ such that $f_{i}^{\prime} f_{i+1}^{\prime}$ is reduced. A basic reduction of $f_{1}, \cdots, f_{2 N_{0}}$ is the following 0 -form $f_{1}^{*}, \cdots f_{2 N_{1}}^{*}$.
(Case 1) f_{i}^{\prime} and f_{i+1}^{\prime} are not empty: We cancel $h h^{-}$, replace f_{i} and f_{i+1} by f_{i}^{\prime} and f_{i+1}^{\prime} respectively and get a 0 -form $f_{1}, \cdots f_{i-1}, f_{i}^{\prime}, f_{i+1}^{\prime}, f_{i+2}, \cdots, f_{2 N_{0}}$ as $f_{1}^{*}, \cdots, f_{2 N_{1}}^{*}$, whose rank is $r_{0}-1$ and $N_{1}=N_{0}+1$.
(Case 2) f_{i}^{\prime} or f_{i+1}^{\prime} is empty:
(Subcase 2.1) f_{i}^{\prime} is empty and $f_{i-1} f_{i+1}^{\prime}$ is reduced, or f_{i+1}^{\prime} is empty and $f_{i}^{\prime} f_{i+2}$ is reduced:

We cancel $h h^{-}$, rearrange pairings if necessary and get a 0 -form $f_{1}^{*}, \cdots, f_{2 N_{1}}^{*}$. Then, in the former case $N_{1}=N_{0}-1$ or the rank is $r_{0}-1$ according to the
emptiness of f_{i+1}^{\prime} and in the latter case $N_{1}=N_{0}-1$ or the rank is $r_{0}-1$ according to that of f_{i}^{\prime}.
(Subcase 2.2) Otherwise, i.e. f_{i}^{\prime} is empty and $f_{i-1} f_{i+1}^{\prime}$ is not reduced, or f_{i+1}^{\prime} is empty and $f_{i}^{\prime} f_{i+2}$ is not reduced:

We get a 0 -form $f_{1}^{*}, \cdots, f_{2 N_{1}}^{*}$ as in Case 2.1, whose rank is equal to or less than r_{0} and $N_{1}=N_{0}$ (actually we can conclude that the rank is r_{0} but it is not necessary for our argument).

Starting from a given loop l of 0 -form, we iterate basic reductions. If the cases other than Subcase 2.2 appear we have the conclusion by induction hypothesis. Hence we show that Subcase 2.2 never continue infinitely many times, which completes our proof of Lemma 3.6. To the contradiction, suppose that Subcase 2.2 iterates infinitely many times starting from a loop l of 0 -form. Then we have an infinite sequence of 0 -forms σ_{n} and $0<a_{n+1}<a_{n}<\cdots<a_{1}=b_{1}<\cdots<b_{n}<b_{n+1}<1$ such that
(1) the rank and the length of σ_{n} are the same as those of σ_{0};
(2) $\left(l \upharpoonright\left[0, a_{n}\right]\right)\left(l \upharpoonright\left[b_{n}, 1\right]\right)$ is the concatenation of paths in σ_{n}.

We remark $\left.\left(l \upharpoonright\left[a_{n}, a_{1}\right]\right)^{-} \equiv l \upharpoonright\left[b_{1}, b_{n}\right]\right)$. Let $a_{\infty}=\inf \left\{a_{n}: n<\infty\right\}$ and $b_{\infty}=\sup \left\{b_{n}: n<\infty\right\}$.

In the m_{0}-step we have N-pairings. If the two intervals of a pair are in $\left[0, a_{\infty}\right] \cup\left[b_{\infty}, 1\right]$, then this pair is not changed in any m-step for $m \geq m_{0}$. For intervals appearing in some steps, we call an interval outside, if it is contained in $\left[0, a_{\infty}\right] \cup\left[b_{\infty}, 1\right]$ and inside if it is contained in $\left[a_{\infty}, b_{\infty}\right]$. We call an interval $[c, d]$ overlapping, if $c<a_{\infty}<d<b_{\infty}$ or $a_{\infty}<c<b_{\infty}<d$. First we claim that an outside interval never be paired with an overlapping one.

To see this by contradiction suppose an outside interval $\left[c_{0}, d_{0}\right]$ is paired with an overlapping interval $\left[c_{1}, d_{1}\right]$. We assume $c_{1}<a_{\infty}<d_{1}$, since the other case is symmetric. Once $\left[c_{0}, d_{0}\right]$ and $\left[c_{1}, d_{1}\right]$ are paired, infinitely many $\left[u, d_{0}\right]$ are paired with some overlapping $\left[c_{1}, v\right]$ in some steps. This implies that there are more than N pairs appear in some step one of whose pairs are subintervals of $\left[c_{0}, d_{0}\right]$, which is a contradiction.

Next we show that after some steps outside intervals are paired with other outside intervals. If an outside intervals I is paired with an inside interval, then according to disppearing of the inside intervals I is possibly partitioned. But such partitionings for I occur only finitely many times, since this procedure fixes the number N_{0} of the pairs. Now we observe a non-degenerate subinterval I_{0} of I, which will not be partitioned. We claim that I_{0} will be paired with an outside interval. Otherwise, I_{0} is paired with infinitely many inside intervals, which implies that I_{0} is the degenerate path
$l\left(a_{\infty}\right)=l\left(b_{\infty}\right)$, a contradiction. Hence we conclude that after some steps every outside interval is paired with another outside one.

We remark that if an overlapping interval does not appear in some step, then it does not appear in further steps and if an overlapping interval is paired with another overlapping interval in some step, then in further steps two overlapping intervals are paired. Next we show that after some steps overlapping intervals are paired with other overlapping intervals. To see this by contradiction, suppose that an overlapping interval $\left[c_{0}, d_{0}\right]$ with $c_{0}<$ $a_{\infty}<d_{0}<b_{\infty}$ is paired with an inside interval and in further steps its overlapping subintervals are paired with inside intervals. Then as in the case of outside intervals there appear only finitely many subintervals of $\left[c_{0}, a_{\infty}\right]$ in the further steps and hence we have an overlapping interval $\left[c_{1}, d_{1}\right]$ with $c_{0} \leq c_{1}<a_{\infty}<d_{1}<d_{0}$ such that in the further steps an overlapping interval containing a_{∞} is of form $\left[c_{1}, d\right]$ for some $d \leq d_{1}$. Since $l \mid\left[c_{1}, a_{\infty}\right]$ is not degenerate, we have a contradiction as in the case of outside intervals. The case $a_{\infty}<c_{0}<b_{\infty}<d_{0}$ is symmetric and we omit its proof.

These imply that after some steps every inside interval is paired with another inside interval. Now choose two points u_{0}, u_{1} from an inside interval so that $l\left(u_{1}\right) \neq l\left(u_{2}\right)$. Then we have copies of them in some inside interval at any further steps and we have a contradiction $l\left(u_{1}\right)=l\left(a_{\infty}\right)=l\left(b_{\infty}\right)=l\left(u_{2}\right)$.

Now we have completed proof of Lemma 3.6. We remark our proof implies that the basic reductions stop in a finite step, since Subcase 2.2 never occurs infinitely many times and other cases decrease the order of a pair (r, N).

A family \mathcal{U} of open subsets of a space X is of order 2 , if $U \cap V \cap W=\emptyset$ for each distinct $U, V, W \in \mathcal{U}$. If a space X is one-dimensional, then every finite open cover has a refinement of order 2 [15].

There is a natural homomorphism from the singular homology to the Čech homology. Though we'll use a result of [12] in principle, we need to investigate the homomorphism more precisely and we present a direct presentation of the homomorphism according to [10].

For a loop l in a one-dimensional space X, we define a loop $f_{\mathcal{U}}$ in the nerve $X_{\mathcal{U}}$ as follows [14].

We take a sequence $0=t_{0}<t_{1}<\cdots<t_{n}=1$ and elements $U_{0}, \cdots, U_{n} \in$ \mathcal{U} with the following properties:

- $l\left(t_{i}\right) \in U_{i}$ for each $0 \leq i \leq n$ and $U_{0}=U_{n}=x_{\mathcal{U}}$;
- $l\left(\left[t_{i}, t_{i+1}\right]\right) \subset U_{i} \cup U_{i+1}$ for $0 \leq i<m$.

Define $l_{\mathcal{U}}:[0,1] \rightarrow X_{\mathcal{U}}$ as $l_{\mathcal{U}}\left(t_{i}\right)=U_{i}$ and extend linearly on each $\left[t_{i}, t_{i+1}\right]$. Then, such an $l_{\mathcal{U}}$ is unique up to homotopy, i.e.
(1) Take another sequence $0=t_{0}^{\prime}<t_{1}^{\prime}<\cdots<t_{n}^{\prime}=1$ and elements $U_{1}^{\prime}, \cdots, U_{n}^{\prime} \in \mathcal{U}$ and define a loop $l_{\mathcal{U}}^{\prime}$ in $X_{\mathcal{U}}$ so as to satisfy the above two conditions. Then, $l_{\mathcal{U}}$ and $l_{\mathcal{U}}^{\prime}$ are homotopic.
(2) If m is a loop in X homotopic to l, then $m_{\mathcal{U}}$ and $l_{\mathcal{U}}$ are also homotopic.
The natural homomorphism $\sigma: H_{1}(X) \rightarrow \check{H}_{1}(X)$ for a path-connected space X is defined by: $\rho_{\mathcal{U}}\left(\sigma\left([l]_{h}\right)\right)=\left[l_{\mathcal{U}}\right]_{h}$, where $\rho_{\mathcal{U}}$ is the projection from $\check{H}_{1}(X)$ to $H_{1}\left(X_{\mathcal{U}}\right)$, and $[l]_{h}$ is the homology class containing l and $\left[l_{\mathcal{U}}\right]_{h}$ the homology class containing $l_{\mathcal{U}}$ respectively.

For the following construction we suppose that X is a locally pathconnected metric space and \mathcal{U} be an open cover of X consisting of pathconnected sets is of order 2 . Since we use this for locally path-connected spaces, we always use covers consisting of path-connected sets.

We use the preceding notation for a loop l in X and a cover of X. Let $\mathcal{U}_{0}=\left\{U_{i}: 0 \leq i \leq n\right\} \subseteq \mathcal{U}$ be a finite cover of $\operatorname{Im}(l)$ and $p_{U_{0}}=l(0)$. Choose $p_{U} \in U$ for $U \in \mathcal{U}_{0}$ with $U \neq U_{0}$. Then, using the path-connectivity of U and V we inductively define an $\operatorname{arc} A_{U V}=A_{V U} \subseteq U \cup V$ between p_{U} and p_{V} for $U, V \in \mathcal{U}_{0}$ with $U \cap V \neq \emptyset$ so that $A_{U V}$ is the unique arc between p_{U} and p_{V} in $(U \cup V) \cap \bigcup\left\{A_{U V}: U, V \in \mathcal{U}_{0}\right\}$. Then $\bigcup\left\{A_{U V}: U, V \in \mathcal{U}_{0}\right\}$ is homeomorphic to a finite graph and $(U \cup V) \cap \bigcup\left\{A_{U V}: U, V \in \mathcal{U}_{0}\right\}$ is simply-connected for each $U, V \in \mathcal{U}_{0}$. We remark that p_{U} may not be a branching point in this finite graph and $A_{U U}$ is the one point set $\left\{p_{U}\right\}$. Since \mathcal{U} is infinite, to avoid a tedious argument, we do not construct a graph in X for the nerve $X_{\mathcal{U}}$.

Next we construct a loop \bar{l} in the finite graph $\bigcup\left\{A_{U V}: U, V \in \mathcal{U}\right\}$ for a loop l with base point U_{0} in the nerve $X_{\mathcal{U}_{0}}$, which is a finite graph, so that a path in the edge $U V$ corresponds to a path from p_{U} to p_{V} on the arc $A_{U V}$.

Then we apply this construction to the above loop $l_{\mathcal{U}}$. Then $\overline{l_{\mathcal{U}}} \upharpoonright\left[t_{i}, t_{i+1}\right]$ is a path from $p_{U_{i}}$ to $p_{U_{i+1}}$ on the $\operatorname{arc} A_{U_{i} U_{i+1}}$ and $\overline{l_{\mathcal{U}}}(0)=l(0)=l(1)=l_{\mathcal{U}}(1)$.

Lemma 3.7. Let X be a one-dimensional locally path-connected metric space. If l is a loop such that $[l]_{h} \in \operatorname{Ker}(\sigma)$, then l is homologous to the sum of arbitrary small cycles. In addition, arbitrary small cycles can be chosen in the image of l.

Proof. Let l be a loop with $[l]_{h} \in \operatorname{Ker}(\sigma)$. For a given cover \mathcal{V}, according to the paracompactness of X we have a locally finite refinement \mathcal{V}_{0} of \mathcal{V}. By Dowker's theorem [15, 7.2.4], we have an open 2-cover \mathcal{V}_{1} which refines \mathcal{V}_{0}. Let \mathcal{U} be the set of all path-connected components of some $V \in \mathcal{V}_{1}$. Then \mathcal{U} is a 2 -cover consisting of path-connected open sets. Hence, for a given $\varepsilon>0$
we can choose an open 2-cover \mathcal{U} of X which consists of path-connected open sets with size less than $\varepsilon / 2$. Taking sufficiently large n, according to the preceding construction we have $0=t_{0}<t_{1}<\cdots<t_{n}=1, U_{i} \in \mathcal{U}, \mathcal{U}_{0}$, p_{U} for $U \in \mathcal{U}_{0}, l_{\mathcal{U}}$ and $\overline{l_{\mathcal{U}}}$.

Let q_{i} be a path from $p_{U_{i}}$ to $l\left(t_{i}\right)$. Since $\left[l_{u}\right]_{h}=0$, we have a partition of the index set $\{0,1, \cdots, n-1\}=\left\{i_{k}, j_{k}: 1 \leq k \leq m\right\} \cup S$ such that $n=2 m+|S|$ and $l \upharpoonright\left[t_{j_{k}}, t_{j_{k}+1}\right]=\left(l \upharpoonright\left[t_{i_{k}}, t_{i_{k}+1}\right]\right)^{-}$and $U_{i}=U_{i+1}$ for each $i \in S$. We remark that this is the edge-path version of the 0 -form in Lemma 3.6. Then, $\overline{l_{\mathcal{U}}}$ is a null-homologous loop in X. We have

$$
\begin{aligned}
& {[l]_{h}-\left[\overline{l_{\mathcal{U}}}\right]_{h} } \\
= & {[l]_{h}-\left[\overline{l_{\mathcal{U}}}\right]_{h}+\sum_{i=1}^{n-1}\left[q_{i}\left(q_{i}\right)^{-}\right]_{h} } \\
= & {\left[(l \upharpoonright [t _ { 0 } , t _ { 1 }]) q _ { 1 } \left(\overline{\left.\left.l_{\mathcal{U}} \upharpoonright\left[t_{0}, t_{1}\right]\right)^{-}\right]_{h}}\right.\right.} \\
& +\sum_{i=2}^{n-2}\left[\left(l \upharpoonright\left[t_{i}, t_{i+1}\right]\right) q_{i+1}\left(\overline{l_{\mathcal{U}}} \upharpoonright\left[t_{i}, t_{i+1}\right]\right)^{-}\left(q_{i}\right)^{-}\right]_{h} \\
& +\left[(l \upharpoonright [t _ { n - 1 } , t _ { n }]) \left(\overline{\left.\left.\left.l_{\mathcal{U}} \upharpoonright\left[t_{n-1}, t_{n}\right]\right)\right)^{-} q_{n}^{-}\right]_{h} .}\right.\right.
\end{aligned}
$$

Since the homology classes of cycles in the last summations are of size less than ε and $\left[\overline{l_{u}}\right]_{h}=0$, we have the conclusion.

For the additional statement, we remark that $\operatorname{Im}(l)$ is a Peano continuum and every path in X is homotopic to the reduced path in its image. Thus, the preceding proof can be done in $\operatorname{Im}(l)$ and we have the additional statement.

Lemma 3.8. Let X be a one-dimensional locally path-connected metric space. Then $R_{\mathbb{Z}}\left(H_{1}(X)\right) \leq \operatorname{Ker}(\sigma)$ holds.

Proof. Decompose X to the path-connected components $X_{i}(i \in I)$. Then we have $H_{1}(X)=\oplus_{i \in I} H_{1}\left(X_{i}\right)$ and $R_{\mathbb{Z}}\left(H_{1}(X)\right)=\oplus_{i \in I} R_{\mathbb{Z}}\left(H_{1}\left(X_{i}\right)\right)$. Hence, without loss of generality we assume that X is path-connected. To prove $R_{\mathbb{Z}}\left(H_{1}(X)\right) \leq \operatorname{Ker}(\sigma)$ by contradiction, suppose that $\sigma\left([l]_{h}\right) \neq 0$ and $[l]_{h} \in$ $R_{\mathbb{Z}}\left(H_{1}(X)\right)$ for a loop l. According to the fact in the proof of Lemma 3.7, we have a 2 -cover \mathcal{U} consisting of path-connected open sets such that $0 \neq$ $\left[l_{\mathcal{U}}\right]_{h} \in H_{1}\left(X_{\mathcal{U}}\right)$. Since $H_{1}\left(X_{\mathcal{U}}\right)$ is a free abelian group, we conclude $[l]_{h} \notin$ $R_{\mathbb{Z}}\left(H_{1}(X)\right)$, which is a contradiction.

Example 3.9. We show the existence of a loop l which is homotopic to the constant loop, but does not contain a non-degenerate subloop of form $f f^{-}$. We denote the clockwise winding to the i-th circle of the Hawaiian earring \mathbb{H} by a_{i}. Let $S e q(2)$ be the subset of $S e q$ consisting of sequences of 0,1 . We define a loop as an infinite concatenation of loops whose sizes converge to zero. Let $\bar{l}=\operatorname{Seq}(2) \backslash\{()\}$ and l be the loop obtained by concatenating a_{i}
and a_{i}^{-}according to the lexicographical ordering of \bar{l}, i.e.

$$
l \upharpoonright\left[\Sigma_{i=1}^{n-1} 2^{-2 i}+\sum_{i=1}^{n} s(i) 2^{-2 i+1}, \Sigma_{i=1}^{n-1} 2^{-2 i}+\sum_{i=1}^{n} s(i) 2^{-2 i+1}+2^{-2 n}\right] \equiv a_{i}
$$

if $s_{n}=0$ and

$$
l \upharpoonright\left[\Sigma_{i=1}^{n-1} 2^{-2 i}+\Sigma_{i=1}^{n} s(i) 2^{-2 i+1}, \Sigma_{i=1}^{n-1} 2^{-2 i}+\Sigma_{i=1}^{n} s(i) 2^{-2 i+1}+2^{-2 n}\right] \equiv a_{i}^{-}
$$

if $s_{n}=1$, where $n=\operatorname{lh}(s)$.
To show that l is homotopic the constant loop, let p_{n} be the projection of \mathbb{H} to the bouquet B_{n} consisting of the first n circles. Then, $p_{n} \circ l$ is a loop in B_{n} and it is easy to see that $p_{n} \circ l$ is null-homotopic. Then l itself is null-homotopic [10, Thm 1]. The reason of the non-existence of a subloop of l of form $f f^{-}$follows from the fact that in l each a_{i} and a_{i}^{-}have immediate successors, but have no immediate predecessor.

The next example shows that we cannot replace the notion of the reducedness of a loop in a space X with a sequence of reduced loops in the nerves of X.

Example 3.10. We construct a reduced loop l in \mathbb{H} such that each projection of l to B_{n} is not reduced for $1 \leq n<\omega$. The construction is similar to the above. Let $\bar{l}=\operatorname{Seq}(2) \backslash\{\langle \rangle\}$ and concatenating $a_{i} a_{i}$ and a_{i}^{-}according to the the lexicographical ordering on \bar{l} instead of concatenating a_{i} and a_{i}^{-}.

The fact that $p_{n} \circ l$ is not reduced can be seen as follows. Consider the appearance of $a_{n} a_{n}$ in $p_{n} \circ l$. Then, a_{n}^{-}follows immediately, i.e. there is a subloop $a_{n} a_{n} a_{n}^{-}$of $p_{n} \circ l$ and hence $p_{n} \circ l$ is not reduced. To see the reducedness of l by contradiction suppose that a non-degenerate subloop l^{\prime} of l is null-homotopic. Without loss of generality we may assume that the base point of l^{\prime} is o. Then l^{\prime} should be an infinite concatenation of a_{i}. Let n be the minimal number such that a_{n} or a_{n}^{-}appears in l^{\prime}. Since l^{\prime} is null-homotopic, the times of appearances of a_{n} and a_{n}^{-}are the same. In the subloop between neighboring a_{n} and a_{n}^{-}, or a_{n}^{-}and a_{n}, a_{n+1} appears one time more than a_{n+1}^{-}and hence l^{\prime} is not null-homotopic. Hence, l is reduced.

4. Construction of loops

For our construction of loops and cycles we prepare some notions which have been used in $[6,5,9]$, but some modification is necessary, since we need to treat with loops with different base points. Though such a treatment has been done by J. Cannon and G. Conner in the proof of [2, Theorem 6.7], their presentation is not sufficiently precise to prove the next lemma. To prove it an exact presentation on the line as that we have done in the previous section is preferable, and we follow the line in $[6,5,9]$.

Suppose that natural numbers k_{i} are given. Let $S=\{s \in S e q: 0 \leq$ $s_{i}<k_{i}$ for $\left.1 \leq i \leq l h(s)\right\}$ and for $s \in S$ let $a_{s}=\sum_{i=1}^{l h(s)} s_{i} / \Pi_{j=1}^{i} k_{j}$. Next let $T=\left\{t \in \operatorname{Seq}: 0 \leq t_{i}<(i+1) k_{i}\right.$ for $\left.1 \leq i \leq \operatorname{lh}(t)\right\}$. Let $S_{m}=$ $\{s \in S: \operatorname{lh}(s)=m\}$ and $T_{m}=\{t \in T: \operatorname{lh}(t)=m\}$. For $t \in S e q$ with $0 \leq t_{i}<(i+1) k_{i}$, define $s_{t}, c_{t} \in S e q$ with $\operatorname{lh}\left(s_{t}\right)=\operatorname{lh}\left(c_{t}\right)=\operatorname{lh}(t)$ by:

$$
(i+1)\left(s_{t}\right)_{i}+\left(c_{t}\right)_{i}=t_{i}, \quad 0 \leq\left(s_{t}\right)_{i}<k_{i}, \quad 0 \leq\left(c_{t}\right)_{i}<i+1
$$

Let

$$
\begin{aligned}
b_{t} & =\sum_{i=1}^{l h(t)}\left((3 i+2)\left(s_{t}\right)_{i}+\left(c_{t}\right)_{i}+1\right) / \Pi_{j=1}^{i}(3 j+2) k_{j} \\
& =\sum_{i=1}^{l h(t)}\left(3 t_{i}-\left(s_{t}\right)_{i}+1\right) / \Pi_{j=1}^{i}(3 j+2) k_{j}
\end{aligned}
$$

and $\varepsilon_{m}=1 / \Pi_{i=1}^{m}(3 i+2) k_{i}$. If $\left(c_{t}\right)_{l h(t)}<l h(t)=m$ for $t \in T$, then we have $t^{+} \in T$ and $b_{t^{+}}=b_{t}+3 \varepsilon_{m}$. But, if $\left(c_{t}\right)_{l h(t)}=l h(t)=m$, then $b_{t}+3 \varepsilon_{m}$ is not equal to any $b_{t^{\prime}}$ for $t^{\prime} \in T$. We remark that $a_{s} \leq a_{s^{\prime}}$ if and only if $s \preceq s^{\prime}$ for $s, s^{\prime} \in S$ and $b_{t} \leq b_{t^{\prime}}$ if and only if $t \preceq t^{\prime}$ for $t, t^{\prime} \in T$.

Let $f:[0,1] \rightarrow X$ be a path.
${ }^{(*)}$ Suppose that we are given finite open covers \mathcal{U}_{n} of $\operatorname{Im}(f)$ such that each $U \in \mathcal{U}_{n}$ is path-connected, the diameter of each $U \in \mathcal{U}_{n}$ is less than $1 / n$, and \mathcal{U}_{n+1} is a refinement of \mathcal{U}_{n}, and also suppose that $U_{s} \in \mathcal{U}_{l h(s)}$ and k_{n} are chosen as $f\left(\left[a_{s}, a_{s^{+}}\right]\right) \subseteq U_{s}$ and $U_{t} \subseteq U_{s}$ for $s \prec t$.

Let l_{s} be a loop in $U_{s} \in \mathcal{U}_{l h(s)}$ with the base point $f\left(a_{s}\right)$ for $s \in S$ with $l h(s)=n$. Let $\alpha_{m+1}=\sum_{i=1}^{m} \Sigma_{s \in S_{i}}(i+1)!\left[l_{s}\right]_{h}+\alpha_{1}$ in $H_{1}(X)$ for $m \geq 1$. Our purpose is to define a path g along f so that $g \cdot f^{-}$is a loop and $(m+1)!\mid\left[g \cdot f^{-}\right]_{h}+\alpha_{1}-\alpha_{m}$ for each $m \in \mathbb{N}$.

For $t \in T_{m}$, define $g \upharpoonright\left[b_{t}, b_{t}-\varepsilon_{m}\right] \equiv l_{s_{t}}$ and for $t \in T$ with $\operatorname{lh}(t)=m$ and $0 \leq\left(c_{t}\right)_{m}<m$, define $g \upharpoonright\left[b_{t}+\varepsilon_{m}, b_{t}+2 \varepsilon_{m}\right] \equiv\left(f \upharpoonright\left[a_{s_{t}}, a_{s_{t}^{+}}\right]\right)^{-}$. If we define these for $t \in T$ for $\operatorname{lh}(t) \leq m$, the parts in $[0,1]$ where we have not defined are $\bigcup_{t \in T_{m}}\left(b_{t}, b_{t}+\varepsilon_{m}\right) \cup\{1\}$. For t satisfying $t_{i}=(i+1)\left(k_{i}-1\right)+i$ (for $1 \leq i \leq m=l h(t)$), we have $b_{t}+\varepsilon_{m}=1$. If $g(x)$ is defined for $x \in\left(b_{t}, b_{t}+\varepsilon_{m}\right)$, then $g(x) \in U_{s_{t}}$. Hence g uniquely extends to a continuous map on $[0,1]$, which we also denote by g. Now g is a path from $f(0)$ to $f(1)$ and hence $g f^{-}$is a loop. We'll show that

$$
\left[g f^{-}\right]_{h}-\Sigma_{i=1}^{m-1} \Sigma_{s \in S_{i}}(i+1)!\left[l_{s}\right]_{h}
$$

is divided by $(m+1)$!.

For a fixed $1 \leq m<\omega$, we cut g into finitely many pieces and consider an element of the chain group:

$$
\begin{aligned}
\sum_{i=1}^{m-1} \Sigma_{t \in T_{i}} g \upharpoonright\left[b_{t}-\varepsilon_{i}, b_{t}\right] & +\Sigma_{i=1}^{m-1} \Sigma_{t \in T_{i}, 0 \leq\left(c_{t}\right)_{i}<i} g \upharpoonright\left[b_{t}+\varepsilon_{i}, b_{t}+2 \varepsilon_{i}\right] \\
& +\Sigma_{t \in T_{m}} g \upharpoonright\left[b_{t}, b_{t}+\varepsilon_{m}\right] .
\end{aligned}
$$

We see that $g \upharpoonright\left[b_{t}-\varepsilon_{i}, b_{t}\right] \equiv l_{s t}$ is a loop if $l h(t)=i$ and $g \upharpoonright\left[b_{t}, b_{t}+2 \varepsilon_{i}\right]$ is also a loop if $l h(t)=i$ and $0 \leq\left(c_{t}\right)_{i}<i$.

For $s \in S_{m}$, let $T_{m, s}=\left\{t \in T_{m}: s_{t}=s\right\}$. For $t \in T_{m}$, define t^{*} so that $t=t^{*} *\left(t_{l h\left(t^{*}\right)+1}, \cdots, t_{m}\right),\left(c_{t}\right)_{l h\left(t^{*}\right)}<l h\left(t^{*}\right)$, and $\left(c_{t}\right)_{i}=i$ for $l h\left(t^{*}\right)<i \leq m$. We remark that, $t^{*}=t$ if and only if $\left(c_{t}\right)_{m}<m$, and, $t^{*}=()$ if and only if $\left(c_{t}\right)_{i}=i$ for $1 \leq i \leq m$.

Since $g \upharpoonright\left[b_{t}, b_{t}+\varepsilon_{m}\right]$ is determined only by s_{t}, if $s_{t}=s_{t^{\prime}}$, then $g \upharpoonright$ $\left[b_{t}, b_{t}+\varepsilon_{m}\right] \equiv g \upharpoonright\left[b_{t^{\prime}}, b_{t^{\prime}}+\varepsilon_{m}\right]$ for $t, t^{\prime} \in T_{m}$.

If $t^{*}=t^{\prime *}$ for distinct $t, t^{\prime} \in T_{m}$, then $s_{t} \neq s_{t^{\prime}}$. Hence the correspondence from t to s_{t} on $\left\{t \in T_{m}: t^{*}=u\right\}$ is one to one for $u \in \bigcup_{i=1}^{m} T_{i}$ with $u(l h(u))<\operatorname{lh}(u)$ or for $u=()$. In addition, for $u \in \bigcup_{i=1}^{m} T_{i}$ with $u(\operatorname{lh}(u))<$ $l h(u)$, we have $g \upharpoonright\left[b_{u}+\varepsilon_{\operatorname{lh}(u)}, b_{u}+2 \varepsilon_{l h(u)}\right] \equiv\left(f \upharpoonright\left[a_{s_{u}}, a_{s_{u}}^{+}\right]\right)^{-}$and, for $t \in T_{m}$ with $t^{*}=()$, we have a corresponding subpath in f^{-}with which $g \upharpoonright\left[b_{t}, b_{t}+\varepsilon_{m}\right]$ forms a loop.

Let $C_{m}=\left\{t \in T_{m}:\left(c_{t}\right)_{i}=i\right.$ for $\left.1 \leq i \leq m\right\}$. Since $\left|\left\{t \in T_{m}: s_{t}=s\right\}\right|=$ $(m+1)$! for $s \in S_{m}$, we have

$$
\begin{aligned}
{\left[g f^{-}\right]_{h}=} & \Sigma_{i=1}^{m-1} \Sigma_{s \in S_{i}}(i+1)!\left[l_{s}\right]_{h} \\
& +\Sigma_{s \in S_{m}}(m+1)!\beta_{s},
\end{aligned}
$$

where $\beta_{s}=\left[g \upharpoonright\left[b_{t}, b_{t}+\varepsilon_{m}\right]\left(f \upharpoonright\left[a_{s}, a_{s}^{+}\right]\right)^{-}\right]_{h}$ for $t \in C_{m}$ with $s_{t}=s$.
Hence, we have $\left[g f^{-}\right]_{h}+\alpha_{1}-\alpha_{m}=\Sigma_{s \in S_{m}}(m+1)!\beta_{s}$ and $\left[g f^{-}\right]_{h}+\alpha_{1}$ is the desired one.

Lemma 4.1. Let X be a one-dimensional Peano continuum. Then $\operatorname{Ker}(\sigma)$ is complete mod- U.

Proof. Let $\alpha_{m} \in \operatorname{Ker}(\sigma)$ and $\alpha_{m} \in \operatorname{Ker}(\sigma)$ and $(m+1)!\mid \alpha_{m+1}-\alpha_{m}$ in $\operatorname{Ker}(\sigma)$ for $1 \leq m<\omega$. Then we have $\gamma_{m} \in \operatorname{Ker}(\sigma)$ such that $(m+1)!\gamma_{m}=$ $\alpha_{m+1}-\alpha_{m}$.

Let $f:[0,1] \rightarrow X$ be a path such that $\operatorname{Im}(f)=X$ and \mathcal{U}_{m} be finite open covers of X such that each $U \in \mathcal{U}_{m}$ is path-connected, the diameter of each $U \in \mathcal{U}_{m}$ is less than $1 / m$ and \mathcal{U}_{m+1} is a refinement of \mathcal{U}_{m}. To use the preceding construction, we inductively choose k_{m} in the following way. First k_{m} should be large so that for each $s \in S$ with $l h(s)=m$ there exits $U \in \mathcal{U}_{m}$ with $f\left(\left[a_{s}, a_{s^{+}}\right]\right) \subseteq U$. By Lemma $3.7 \gamma_{m}$ can be expressed as the
sum of homology classes of arbitrary small loops. We want loops in some $U \in \mathcal{U}_{m}$, hence the number of loops might be large. Second k_{m} should be large so that γ_{m} is expressed by k_{m} loops each of which is in some $U \in \mathcal{U}_{m}$. Hence we choose k_{m} which satisfies the two conditions. Since each $U \in \mathcal{U}_{m}$ is path-connected, a sum of homology classes of loops in U can be replaced by a homologous loop in U. Hence we have $U_{s} \in \mathcal{U}_{l h(s)}$ and loops l_{s} in U_{s} with base point $f\left(a_{s}\right)$ so that

$$
\gamma_{m}=\Sigma_{l h(s)=m}\left[l_{s}\right]_{h} .
$$

Then we have $\alpha_{m+1}=\Sigma_{i=1}^{m} \Sigma_{s \in S_{i}}(i+1)!\left[l_{s}\right]_{h}+\alpha_{1}$ in $H_{1}(X)$ for $m \geq 1$. Now, the assumptions for the preceding construction are satisfied and we have the desired element $\left[g f^{-}\right]_{h}+\alpha_{1}$.

Lemma 4.2. [11, Theorem 2.1] Let X be a one-dimensional normal space. Then $H_{1}(X)$ is torsionfree.

Now, according to the facts in Section 2 Lemmas 4.1 and 4.2 imply
Lemma 4.3. Let X be a one-dimensional Peano continuum. Then $\operatorname{Ker}(\sigma)$ is algebraically compact.

Lemma 4.4. (Folklore) Let X be a one-dimensional Peano continuum. If X is semi-locally simply connected, then the Čech homology group $\check{H}_{1}(X)$ is isomorphic to a free abelian group of finite rank. Otherwise, $\breve{H}_{1}(X)$ is isomorphic to \mathbb{Z}^{ω}.

Next we construct loops whose homotopy classes are in $\operatorname{Ker}(\sigma)$ and the homology classes which generate pure subgroups of $H_{1}(X)$ when X is not locally semi-simply connected. Suppose that X is not locally simply connected at $x_{0} \in X$.

First lemma is well-known and it can be proved using arbitrarily small simple closed curves and we omit its proof.

Lemma 4.5. Let X be a one-dimensional space Peano continuum which is not semi-locally simply-connected at x_{0}. Then there exists a closed subspace Y such that $\left(Y, x_{0}\right)$ is homotopy equivalent to the Hawaiian earring (\mathbb{H}, o).

Then we have a dendrite D in Y such that $Y \backslash D$ consists of countable open $\operatorname{arcs} A_{n}$ which converge to x_{0} by [7, Theorem 1.2] with its proof.

We construct certain reduced loops in Y. Let l_{n} be a reduced loop which starts from x_{0}, reach a one end of A_{n} in D, goes through A_{n} and goes back to x_{0} in D. We call this direction of A_{n} to be plus and the reverse direction to be minus.

Let l_{n}^{*} be the reduced loop of $l_{2 n} l_{2 n+1} l_{2 n}^{-} l_{2 n+1}^{-}$, i.e l_{n}^{*} goes plus $A_{2 n}$, plus $A_{2 n+1}$, minus $A_{2 n}$ and minus $A_{2 n+1}$ when we disregard D. We call this last property $\left(*_{n}\right)$ for simplicity. Moreover, the reduced loops of $l_{0}^{*} \cdots l_{m}^{*}$ for $m \geq n$ also has this property $\left(*_{n}\right)$. Let l^{*} be the reduced loop of the infinite concatenation $l_{0}^{*} \cdots l_{n}^{*} \cdots$. Then we see that, for each $\delta>0, l^{*} \upharpoonright[1-\delta, 1]$ has the property $\left(*_{n}\right)$ for sufficiently large n and for each n there exists $\delta>0$ such that $l^{*} \upharpoonright[0,1-\delta]$ has the property $\left(*_{n}\right)$. We remark that l^{*-} has not the property $\left(*_{n}\right)$.

For a non-degenerate path $f:[0,1] \rightarrow X$, a tail of f is a subpath $f \upharpoonright[1-\delta, 1]$ for some $\delta>0$. The following lemma is straightforward and we omit its proof.

Lemma 4.6. Let $f_{0} \cdots f_{k}$ be a reduced path. There exists a tail m_{0} of l^{*} such that every subpath m in $f_{0} \cdots f_{k}$ which is equivalent to m_{0} or m_{0}^{-}is a subpath of some f_{i}.

Lemma 4.7. The homology class $\left[l^{*}\right]_{h}$ generates a pure subgroup of $H_{1}(X)$ which is isomorphic to \mathbb{Z}.

Proof. Since $H_{1}(X)$ is torsionfree, it is sufficient to show that $\left[l^{*}\right]_{h}$ is not divided by any $n \geq 2$. To show by contradiction, suppose that $\left[l^{*}\right]_{h}$ is divided by some $n \geq 2$. Then we have a cyclically reduced loop l and a reduced path such that $p l p^{-}$is a reduced with base point x_{0} and $l^{*} p l^{n} p^{-}$is of 0 -form among paths in X. We argue dividing to cases.
(Case 1) p is degenerate and $l^{*} l^{n}$ is reduced:
We have $l^{*} l^{n} \equiv f_{1} \cdots f_{k}$ where f_{1}, \cdots, f_{k} are paired forming 0 -form. By Lemma 4.6 we have a tail m_{0} which satisfies the property in the lemma for $l^{*} l \cdots l$ and $f_{1} \cdots f_{k}$ under these presentations. Then the number of occurrences of m_{0} is the same as that of m_{0}^{-}in $f_{1} \cdots f_{k}$. Let a^{+}be the number of occurrences of m_{0} in l and a^{-}be the number of occurrences of m_{0} in l. Then we have $n a^{+}+1=n a^{-}$and hence $n\left(a^{-}-a^{+}\right)=1$, which contradicts $n \geq 2$.
(Case 2) p is non-degenerate and $l^{*} p l^{n} p^{-}$is reduced:
We choose m_{0} similarly to Case 1 considering p and p^{-}. Since the number of occurrences of m_{0} in p is the same as that of m_{0}^{-}in p^{-}and that of m_{0}^{-} in p is the same as that of m_{0} in p^{-}, we have a contradiction as in Case 1.
(Case 3) p is degenerate and $l^{*} l^{n}$ is not reduced:
Since there is a tail t of l^{*} such that t^{-}is a a head of l, the reduced loop of $l^{*} l^{n}$ of the form $q_{0} q_{2} l^{n-1}$ where $q_{0} q_{1} \equiv l^{*}$ and $q_{1} q_{2} \equiv l$. Using the presentation $q_{0} q_{2} q_{1} \cdots q_{1} q_{2}$ and the 0 -form, we choose m_{0}. Let a^{+}be
the number of occurrences of m_{0} in $l \equiv q_{1} q_{2}$ and a^{-}be the number of occurrences of m_{0} in l as before. Since m_{0}^{-}occurs once in q_{1} and m_{0} does not, we have $n-1+n\left(a^{+}-1\right)=n a^{-}$and hence $n\left(a^{+}-a^{-}\right)=1$, which is a contradiction.
(Case 4) p is non-degenerate and $l^{*} p l^{n} p^{-}$is not reduced: For a sufficiently small tail m_{0} of l^{*}, we have $q_{0} m_{0} \equiv l^{*}$ and $m_{0}^{-} p_{0} \equiv p$. Then in the reduction of $q_{0} p_{0} l^{n} p_{0}^{-} m_{0}$ any tail of l or its inverse is canceled. Hence we have a contradiction as in (Case 2).

Lemma 4.8. Let X be a one-dimensional normal space. If Y is a pathconnected subspace of X, then $H_{1}(Y)$ is a subgroup of $H_{1}(X)$.

Proof. Since every element of $H_{1}(Y)$ is a homology class of a loop in Y, we let l to be a reduced loop in Y. We only deal with the case that l is nondegenerate. Since the reduced loop of a loop is in the image of the original loop, the reducedness does not depend on whether we consider in X or in Y. Suppose that the homotopy class of l belongs to a commutator subgroup of $\pi_{1}(X)$. Then l is equivalent to a 0 -form where each paths are generally in X, but Lemma 3.6 implies that each path is in Y. Therefore, $H_{1}(Y)$ is a subgroup of $H_{1}(X)$.

Proof of Theorem 1.1. Let $h: H_{1}(X) \rightarrow \mathbb{Z}$ be a homomorphism. By lemma 4.1 we have $h(\operatorname{Ker}(\sigma))=\{0\}$ and consequently by Lemma 3.8 we have $\operatorname{Ker}(\sigma)=R_{\mathbb{Z}}\left(H_{1}(X)\right)$. Therefore $H_{1}(X) / \operatorname{Ker}(\sigma)$ is a subgroup of the direct product of copies of \mathbb{Z}, which is obviously torsionfree. By Lemma 4.3 this implies that $\operatorname{Ker}(\sigma)$ is a direct summand. If X is semi-locally simplyconnected, then it is well-known that $H_{1}(X)$ is a free abelian group of finite rank. Otherwise, we have $\check{H}_{1}(X) \cong \mathbb{Z}^{\omega}$ and hence $H_{1}(X) \cong \operatorname{Ker}(\sigma) \oplus \mathbb{Z}^{\omega}$. Since there exists a subspace of X which is homotopy equivalent to the Hawaiian earring \mathbb{H}, the divisible part $D\left(H_{1}(X)\right)$ contains $D\left(H_{1}(\mathbb{H})\right) \cong$ $\oplus_{\mathbf{c}} \mathbb{Q}$ by Lemma 4.8. Since the cardinality of $H_{1}(X)$ is equal to or less than c, we have $D\left(H_{1}(X)\right) \cong \oplus_{\mathbf{c}} \mathbb{Q}$. The remaining task is to determine the cardinality about reduced algebraically compact group.

Since $\sigma\left(\left[l^{*}\right]_{h}\right)=0$ for l^{*} in Lemma 4.7, we see $\left[l^{*}\right]_{h}$ generates a pure subgroup of $\operatorname{Ker}(\sigma)$. To show that $\operatorname{Ker}(\sigma)$ contains a pure subgroup isomorphic to a free abelian group of the continuum rank we modify the construction of l^{*} as in the proof of [11, Lemma 3.5]. There exists an almost disjoint family consisting of infinite sets of integers, where S and T is almost disjoint if $S \cap T$ is finite. Let l_{S}^{*} be the reduced loop of $l_{i_{0}}^{*} \cdots l_{i_{n}}^{*} \cdots$, where $i_{0}<\cdots<i_{n}<\cdots$ is the enumeration of S in the order of the integers.

Now it suffices to show that $l_{S_{1}}^{*}, \cdots, l_{S_{n}}^{*}$ is linearly independent for an almost disjoint family S_{1}, \cdots, S_{n}. We have a finite set F of integers such that $S_{i} \cap S_{j} \subseteq F$ for distinct i, j. For a set S of integers let $r_{S}: Y \rightarrow Y$ be a retraction such that $r_{S}\left(A_{n}\right) \subseteq D$ for $n \notin S$ and $r_{S} \upharpoonright A_{n}$ is the identity for $n \in S$. Let $\left.\lambda_{1}\left[l_{S_{1}}^{*}\right]_{h}+\cdots+\lambda_{n}\left[l_{S_{n}}^{*}\right]\right]_{h}=0$. By Lemma4.8, we may work in Y. Let $S=S_{i} \backslash F$. Since $\left(r_{S}\right)_{*}\left(\left[l_{S_{j}}^{*}\right)\right.$ is trivial for $j \neq i$ but $S \neq \emptyset$ and $H_{1}(X)$ is torsionfree, $\left(r_{S}\right)_{*}\left(\left[l_{S_{i}}^{*}\right]_{h}\right)$ is non-zero and hence $\lambda_{i}=0$.

Remark 4.9. Here we show that the compactness of a space is essential for the algebraical compactness of $\operatorname{Ker}(\sigma)$ in Lemma 4.3. Let X be a subspace of the plane obtained by attaching copies of \mathbb{H} on the half line $\{0\} \times[0, \infty)$, i.e.

$$
\begin{aligned}
X= & \{0\} \times[1, \infty) \cup \\
& \left\{(x, y):\left(x-\frac{1}{n}\right)^{2}+(y-m)^{2}=\frac{1}{n^{2}}: 3 \leq n<\omega, 1 \leq m<\omega\right\} .
\end{aligned}
$$

Then X is locally path-connected, path-connected, separable metric space. In the m-th copy of the Hawaiian earring, we have a non-trivial element α_{m} in $\operatorname{Ker}(\sigma)$ such that $\left\langle\left[\alpha_{m}\right]_{h}\right\rangle$ is a pure subgroup of $H_{1}(X)$, where σ is the natural homomorphism to the Čech homology group. Then we have

$$
(m+1)!\mid \sum_{i=1}^{m+1} i!\left[\alpha_{i}\right]_{h}-\sum_{i=1}^{m} i!\left[\alpha_{i}\right]_{h} .
$$

Suppose that $\operatorname{Ker}(\sigma)$ is algebraically compact. Then we have a loop l such that $(m+1)!\mid[l]_{h}-\sum_{i=1}^{m} i!\left[\alpha_{i}\right]_{h}$ for each $1 \leq m<\omega$. Since the image of l is compact, we have m_{0} such that

$$
\begin{aligned}
\operatorname{Im}(l) \subseteq & \{0\} \times\left[1, m_{0}-1\right] \cup \\
& \left\{(x, y):\left(x-\frac{1}{n}\right)^{2}+(y-m)^{2}=\frac{1}{n^{2}}: 3 \leq n<\omega, 1 \leq m \leq m_{0}-1\right\}
\end{aligned}
$$

Considering the retraction of X to

$$
\left\{(x, y):\left(x-\frac{1}{n}\right)^{2}+\left(y-m_{0}\right)^{2}=\frac{1}{n^{2}}: 3 \leq n<\omega\right\}
$$

we conclude $\left(m_{0}+1\right)!\mid-m_{0}!\left[\alpha_{m_{0}}\right]_{h}$. Since $H_{1}(X)$ is torsionfree, we have $m_{0}+1 \mid\left[\alpha_{m_{0}}\right]_{h}$, which contradicts that $\left\langle\left[\alpha_{m_{0}}\right]_{h}\right\rangle$ is a pure subgroup.

Though $\operatorname{Ker}(\sigma)$ may not be algebraically compact for a non-compact space X, we have the following.

Theorem 4.10. Let X be a one-dimensional locally path-connected metric space. Then $\operatorname{Ker}(\sigma)=R_{\mathbb{Z}}\left(H_{1}(X)\right)$.

Proof. By lemma 3.8 it suffices to show that $\operatorname{Ker}(\sigma) \leq R_{\mathbb{Z}}\left(H_{1}(X)\right)$. Since each path-connected component is open by the local path-connectivity, the

Čech homology group is the direct product of the Čech homology groups of path-connected components. Hence without loss of generality we may assume that X is path-connected. Let l be a loop with $[l]_{h} \in \operatorname{Ker}(\sigma)$ and $h: H_{1}(X) \rightarrow \mathbb{Z}$ be a homomorphism. We define a map $\varphi: \widehat{\mathbb{Z}} \rightarrow \operatorname{Ker}(\sigma)$ such that $h \circ \varphi$ becomes to be a homomorphism. For $u \in \widehat{\mathbb{Z}}$, i.e. $u=$ $\sum_{i=1}^{\infty} m!a_{m}$ where $0 \leq a_{m} \leq m$, we define a loop l_{u} as follows. We modify the construction in the proof of Lemma 4.1. Replace f by l and for each a_{m} we express $a_{m}[l]_{h}$ as the sum of homology classes of loops each of which is in some $U \in \mathcal{U}_{m}$. Then we have a loop l_{u} such that

$$
(m+1)!\mid\left[l_{u}\right]_{h}-\sum_{i=1}^{m} i!a_{i}[l]_{h} .
$$

Let $\varphi(u)=\left[l_{u}\right]_{h}$. For $u, v \in \widehat{\mathbb{Z}}$, let $u=\sum_{i=1}^{\infty} i!a_{i}, v=\sum_{i=1}^{\infty} i!b_{i}$ and $u+v=$ $\sum_{i=1}^{\infty} i!c_{i}$ where $0 \leq a_{i}, b_{i}, c_{i} \leq i$. Since

$$
(m+1)!\mid \sum_{i=1}^{m} i!c_{i}-\left(\sum_{i=1}^{m} i!a_{i}+\sum_{i=1}^{m} i!b_{i}\right)
$$

we have

$$
(m+1)!\mid h\left(\left[l_{u+v}\right]_{h}\right)-\left(h\left(\left[l_{u}\right]_{h}+h\left(\left[l_{v}\right]_{h}\right)\right)\right.
$$

for every m and hence $h \circ \varphi(u+v)=h \circ \varphi(u)+h \circ \varphi(v)$. Since \mathbb{Z} is cotorsionfree, $h \circ \varphi$ is a trivial homomorphism, which implies $h\left([l]_{h}\right)=$ $h \circ \varphi(1)=0$.

Remark 4.11. According to Theorem $1.1 H_{1}(X) / R_{\mathbb{Z}}\left(H_{1}(X)\right)$ is isomorphic to a free abelian group of finite rank or \mathbb{Z}^{ω}. Even for one-dimensional locally path-connected separable metric spaces $X, H_{1}(X) / R_{\mathbb{Z}}\left(H_{1}(X)\right)$ are abundant. For this we refer the reader to [13, Section 6], we defined a factor $H_{n}^{T}(X)$ of the singular homology group $H_{n}(X)$ and in our case $H_{1}^{T}(X) \cong$ $H_{1}(X) / R_{\mathbb{Z}}\left(H_{1}(X)\right)$ holds. There we see the abundance of $H_{1}^{T}(X)$. The spaces defined there are not metrizable, but by a standard method inducing metrizable topology we have metrizable spaces X with the same $H_{1}(X)$ and $H_{1}^{T}(X)$.

5. Acknowledgments

The author thanks Wolfram Hojka for asking a proof of [6, Lemma 4.11], which leads the author finding a right way of proofs. He also thanks Hanspeter Fischer for detecting logical errors after precise reading. He also thanks to the referee for his precise reading of complicated proofs. The author was partially supported by the Grant-in-Aid for Scientific research (C) of Japan No. 23540110.

References

[1] M.G. Barratt and J. Milnor, An example of anomalous singular theory, Proc. Amer. Math. Soc. 13 (1962), 293-297.
[2] J. W. Cannon and G. R. Conner, On the fundamental groups of one dimensional spaces, Topology Appl. 153 (2006), 2648-2672.
[3] M. L. Curtis and M. K. Fort, Singular homology groups of one-dimensional spaces, Ann. Math. 69 (1959), 309-313.
[4] M. Dugas and R. Göbel, Algebraisch kompakte faktorgruppen, J. reine angew. Math. 307/308 (1979), 341-352.
[5] K. Eda, The first integral singular homology groups of one point unions, Quart. J. Math. Oxford 42 (1991), 443-456.
[6] \qquad , Free σ-products and noncommutatively slender groups, J. Algebra 148 (1992), 243-263.
[7] , The fundamental groups of one-dimensional spaces and spatial homomorphisms, Topology Appl. 123 (2002), 479-505.
[8] , Homotopy types of one-dimensional Peano continua, Fund. Math. 209 (2010), 27-45.
[9] , Atomic property of the fundamental group of the Hawaiian earring and wild Peano continua, J. Math. Soc. Japan 63 (2011), 769-787.
[10] K. Eda and K. Kawamura, The fundamental groups of one-dimensional spaces, Topology Appl. 87 (1998), 163-172.
[11] , The singular homology of the Hawaiian earring, J. London Math. Soc. 62 (2000), 305-310.
[12] , The surjectivity of the canonical homomorphism from singular homology to Čech homology, Proc. Amer. Math. Soc. 128 (2000), 1487-1495.
[13] K. Eda and K. Sakai, A factor of singular homology, Tsukuba J. Math. 15 (1991), 351-387.
[14] S. Eilenberg and N. Steenrod, Foundation of algebraic topology, Princeton University Press, 1952.
[15] R. Engelking, General topology, Heldermann Verlag, 1989.
[16] L. Fuchs, Infinite abelian groups, vol. 1,2, Academic Press, 1970,1973.
School of Science and Engineering, Waseda University, Tokyo 169-8555, JAPAN

E-mail address: eda@waseda.jp

[^0]: 2010 Mathematics Subject Classification. 55N10, 54E45, 20K.
 Key words and phrases. one-dimension, Peano continuum, singular homology, Hawaiian earring, algebraic compactness.

 The author is partially supported by the Grant-in-Aid for Scientific research (C) of Japan No. 20540110.

